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In the classic Condorcet setting, agents choose between two alternatives
A or B with a simple majority vote. Voters have potentially heterogeneous
private preferences that depend on an unknown state, α or β, in a monotone
way: A random voter type is more likely to prefer A when he considers α more
likely; see Bhattacharya (2013). Each voter holds a private signal about the
state. The Condorcet jury theorem states that the outcome of strategic voting
is the same as under full information about the state as the number of voters
grows large (“information aggregation”), provided that the private preferences
are i.i.d across voters, the private signals i.i.d. conditional on the state, and
when considering any sequence of non-trivial symmetric equilibria. We show
that the conclusion does not require signals and preferences to be identically
distributed and also not the restriction to symmetric equilibrium.

The “modern” Condorcet jury theorem rests on symmetry (Bhattacharya, 2013;
Feddersen and Pesendorfer, 1997, 1998). First, the environment is symmetric: Vot-
ers are assumed to be ex-ante identical, drawing preferences and signals from the
same distributions independently conditional on the state. In addition to the sym-
metric environment, voters are assumed to behave symmetrically, following the same
strategy.

Ex-ante asymmetry of voter preferences and information is natural in many sit-
uations. It captures the typical feature that the voting body consists of multiple
“interest groups”. Preferences and also information differ in distribution across in-
terest groups. Often, two groups hold opposed preferences, such as in distributive
politics, e.g., in the context of education or trade reforms; see Fernandez and Rodrik
(1991); Kim and Fey (2007); Acharya (2016); Ali, Mihm, and Siga (2018). Similarly,
public news may coordinate voter behavior in an asymmetric way; in particular, the
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literature on “public persuasion” of voters has studied how to exploit such asymmetric
coordination; see, e.g., Alonso and Câmara (2016).

The symmetry assumptions are not innocent. In the simple symmetric environ-
ment of Feddersen and Pesendorfer (1998) in which voters have the same preference
type, there are asymmetric equilibria of the majority voting game for which infor-
mation aggregation fails. We provide an example of such an equilibrium in the next
section.

Our main result is to show that such failures of information aggregation cannot
happen in any non-trivial and possibly asymmetric equilibrium when each voter may
be a partisan voter for either alternative, even if just with minimal probability.

We prove such “Condorcet jury theorem without symmetry” (Theorem 1 and 4)
within the setting of next section’s example modified with partisans, and we extend
the result to the canonical setting by Bhattacharya (2013) with heterogeneous pref-
erences modified to include ex-ante asymmetry:

As in Bhattacharya (2013)’s setting, a majority election decides over two possible
alternatives—A and B. Voters’ preferences over alternatives are private, heteroge-
neous, and depend on an unknown state, α or β. Some voters may prefer A in state
α and B in β, with heterogeneous “thresholds of doubt” when they are uncertain
about the state, while others may be “partisans” who prefer one alternative or the
other, independently of the state. All voters privately receive a private noisy signal
about the state. Preferences are independent across voters and signals independent
conditional on the state.1 There is a finite set of 2n + 1 voters, and, here, we allow
them to be ex-ante asymmetric: Each voter has a distribution from which his private
signal and his private preference type are drawn. Distributions can be non-identical
across voters.

A central technical difficulty of extending the CJT to asymmetric settings is that
asymmetries do not wash out in large elections. When voters behave asymmetrically,
then even with an arbitrarily large number of voters, two different voters can make
substantially different inferences from being “pivotal” for the election outcome. Thus,
the voting incentives can also differ substantially for any two voters.

The underlying cause is related to the so-called ”swing voters’ curse” (Feddersen
1Heese and Lauermann (2019) show that lifting the standard independence assumption for the

signal distributions is not innocuous, so we maintain it, and also the independence assumption for
the preference distributions.
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and Pesendorfer, 1996). The ”swing voters’ curse” emerges from the fact that when
the vote count for an alternative increases even by just one vote, the posterior prob-
ability of that alternative increases strictly, and this effect does not vanish when the
number of voters grows large, n → ∞.2

We explain how the failure of information aggregation in our example relies on
the voter’s different posteriors. Critically, when there are partisans, they imply a
bound on the difference (Lemma 3) violated in the example equilibrium. This way,
the logic of the equilibrium in which aggregation fails will break down. This bound
will be a key ingredient in proving the “Condorcet jury theorem without symmetry”
in general.

Our proof relies on a set of technical results. To establish these, we leverage statis-
tical tools, particularly from the theories of large deviations and stochastic dominance.
We present a characterization of the probability of a tie for a sequence of independent
but not identically distributed Bernoulli random variables tailored to the voting set-
ting (Theorem 1). Then, we establish comparative static results for this probability
(Lemma 1 and 2), using an instance of Strassen’s theorem on stochastic dominance as
well as properties of the Poisson binomial distribution (Darroch, 1964). The technical
results may be of independent interest to voting theorists.

The remaining paper is structured as follows: Section 1 presents the example.
Section 2 presents the technical results. Section 3 starts with the model based on
Bhattacharya (2013), characterizes the best response of voters in terms as a function
of the probability of a tie among 2n Bernoulli variables, and derives the bound on
the posterior differences across voters. Section 4 proves the “Condorcet jury theorem
without symmetry.” Section 5 concludes.

1 Failure of the CJT with Asymmetric Equilibria
Consider the following symmetric environment from Feddersen and Pesendorfer (1998):
There are 2n + 1 voters who choose between two alternatives, A and B. There are
two states, ω ∈ {α, β}, that are equally likely ex-ante. Voters have pure common
values: Each voter obtains a payoff of 1 when the state matches the outcome and 0

2Feddersen and Pesendorfer (1996) cite anecdotal evidence for the “swing-voters curse” and
connect it to “roll-off”-voting, where voters may vote on some items on a ballot——such as the
governor—but not on others—such as a referendum on a constitutional change.
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otherwise. Finally, each voter i ∈ {1, 2, ..., 2n+ 1} obtains a binary signal si ∈ {a, b},
drawn independently and identically across voters, with precision

Pr (si = a|α) = Pr (si = b|β) = r for all i, and 1

2
< r < 1.

The voting game is as follows. The voters simultaneously vote for A or B; then, the
majority choice is implemented. We consider Bayesian Nash equilibria in which each
voter i chooses a voting strategy σi : {a, b} → [0, 1] that is a best response to σ−i,
with σi (si) the probability that voter i votes for A with signal si. A voting profile
σ = (σi)

2n+1
i=1 is “trivial’ if there is a voter who is never pivotal. For example, voting

for A with probability 1 by all voters is a trivial equilibrium.

Condorcet Jury Theorem. (Feddersen and Pesendorfer (1998)) For each n large
enough, there is a unique nontrivial symmetric equilibrium σ∗ with

σ∗
i (a) = 1 = 1− σ∗

i (b) , and lim
n→∞

Pr(A is elected|α) = lim
n→∞

Pr(B is elected |β) = 1.

The unique equilibrium is given by “sincere” voting where voters vote A after an
a-signal and B after a b-signal. The equilibrium “aggregates information”, meaning
that the elected outcome is the one preferred by the majority of the voters under full
information about the state, as the electorate grows large.

We now give a counter-example showing that the Condorcet Jury theorem relies
on the restriction to symmetric equilibrium in the above pure common values setting:3

Example. There exists a sequence (σ∗)n∈N of asymmetric equilibria for which

lim
n→∞

Pr(A is elected|α) = lim
n→∞

Pr(B is elected |β) = M < 1.

The explanation below shows that M as low as M = [r3 + 3r2(1− r)] > 1/2 is
possible in some equilibrium sequence.

Take any voter number 2n + 1 > 3 and split the electorate into 3 experts (the
voters i = 1, 2, 3) and 2n − 2 non-experts. We show that there is an asymmetric
equilibrium in which the experts vote sincerely, but the non-experts behave as follows:
Every even-numbered non-expert i ∈ {4, 6, ..., 2n} votes A and every odd-numbered
non-expert i ∈ {5, 7, ..., 2n+ 1} votes for B.

3The example is from Justus Preusser.
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The equilibrium logic is simple. The votes of the non-experts cancel each other.
So, an expert is pivotal if one of the two other experts votes A and the other votes B,
which means that the other experts hold one a-signal and one b-signal. This makes
sincere voting a mutual best response for the experts: Given the symmetric prior
and symmetric signal distribution, the posterior probability conditional on the voter
being pivotal and conditional on her signal is above the prior 0.5 when her signal is
a and below if it is b.

For the non-experts, this is different: For example, voter i = 4, who is supposed to
vote for A, is pivotal with an A-vote if the experts received 2 a-signals and 1 b-signal.
The pivotal event contains no information about the signals of the remaining voters.
The posterior probability conditional on the voter being pivotal and herself having
signal b is equal to the prior, 0.5. Thus, conditional on being pivotal with a b-signal,
the voter is indifferent and willing to vote A.

Note that this argument constructs an asymmetric equilibrium for each n. For
each n, the full-information outcome is elected in α (in β) only if at least 2 of
the 3 experts receive an a-signal (a b-signal). This happens with probability M =

[r3 + 3r2(1− r)]. Thus, information does not aggregate as n → ∞. We summa-
rize: The conclusion of the Condorcet jury theorem does not hold for asymmetric
equilibria.

Partisans and Updating Differences. The example features substantial differ-
ences in the non-expert’s posteriors conditional on being pivotal; a vote for A is
pivotal when there are more a-signals among the experts, and a vote for B is pivotal
when there are more b-signals among them. Thus, a non-expert is more likely to be
pivotal with any given voting choice when this choice is in her interest.4 These pos-
terior differences rationalize some voters voting A deterministically and others with
the same preferences simultaneously voting B deterministically.

Our main result will show that equilibria where information aggregation fails no
longer exist when there is “noise” in the form of partisan voters. That is, each
voter’s preferences are such that she prefers A in both states or B in both states,
both with strictly positive probability ε > 0. Section 3.3 shows formally that the
possibility of being a partisan implies a certain bound on the difference in any two

4The opposite phenomenon is called the swing voter’s curse; in analogy, one may term our
observation “swing-voter’s blessing.”
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voters’ posteriors. In the context of the example–modified by assuming that each
voter is a partisan for either alternative with a positive probability and otherwise a
non-partisan as before—the bound implies that it is not possible that, at the same
time, some non-partisans vote A deterministically while others do so for B. Thus the
equilibrium logic of the example breaks down.

We close this section with some remarks related to the example: First, note that
the voter’s best equilibrium often has a similar structure in related environments.
For example, if the voting rule specifies that A wins whenever more than n + d

votes are for A, then for any d > 0, the voter’s best symmetric equilibrium yields
a strictly lower payoff than the voter’s best asymmetric equilibrium. The voter’s
best asymmetric equilibrium features a deterministic set of voters who vote for B

independently of their signal, which may be interpreted as an effort to “de-bias” the
voting rule; see Ladha, Miller, and Oppenheimer (1996).5 Second, in the literature,
one often considers responsive equilibria where each the voter has a strictly positive
probability of voting either way, unlike in our example equilibrium. However, with
asymmetric signals and, especially, asymmetric preferences, this requirement is too
stringent. One can easily find example settings in which no responsive equilibrium
exists. For example, consider an asymmetric environment where signals have bounded
precision, and there are some continuously distributed “thresholds of doubts” (as in
Section 3 below). Then, in the natural equilibria, voters with thresholds that are
known to be sufficiently close to 0 and 1 will vote for their preferred alternative.
Third, the example is easily modified so that incentives are strict.6

5Indeed, these authors report that participants in a voting experiment utilize asymmetric strate-
gies, yielding payoffs above the theoretical maximum across symmetric equilibria; see Ladha, Miller,
and Oppenheimer (1996).

6Suppose there are 2 voters whose signals have high precision, with

Pr (si = a|α) = Pr (si = b|β) = rH > 0.5 for i ∈ {1, 2, 3}

and the remaining voters 2 (n− 2) voters have low precision

Pr (si = a|α) = Pr (si = b|β) = rL > 0.5 for i ∈ {4, ..., 2n+ 1}

with
0.5 < rL < rH < 1.
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2 Large Deviation Theory for a Voting Appplica-
tion

We present several technical results about large deviation probabilities for sequences
of independent but not identically distributed Bernoulli random variables. The results
are later used to prove the “Condorcet jury theorem without symmetry” and may be
interesting to voting theorists more generally.

Typical textbook results about large deviation theory of sequences of non-identical
random variables—most prominently the Gaertner-Ellis theorem—are in terms of
probabilities of non-point events such as of intervals, Pr

(∑2n
i=1 Xi ≤ ⌊2nγ⌋

)
, and ex-

press these in terms of a minimizing “Fenchel-Legendre transform”. Section 2.1 states
a variant (Theorem 1) that is specifically tailored to voting applications: First, by
considering point probabilities instead of interval probabilities; second, by giving a
formulation in terms of the minimizing expected Kullback-Leibler divergence. We
provide an entirely elementary proof in the main text and explain the formal relation
of Theorem 1 to the Gaertner-Ellis theorem in the Appendix.

Section 2.2 provides comparative statics of the point probabilities when comparing
different sequences of non-identically distributed Bernoulli random variables. Lemma
1 states a monotonicity property that we derive utilizing results by Darroch (1964)
about the Poisson binomial distribution. Lemma 2 shows how the formulation in
terms of the expected Kullback-Leibler divergence gives a gateway to characterizing
behavior aggregated across the sequence. This is key in voting scenarios where out-
comes are determined by the aggregate behavior of the voters, such as the number of
votes for a given alternative.

2.1 The Point Probabilities for Independent but not Identical
Bernoulli Random Variables

Consider a sequence of independent Bernoulli random variables (Xi)
∞
i=1 with Xi ∈

{0, 1}. For any n, let F n (q) = 1
2n
| {i : qi ≤ q and i ≤ 2n} the cumulative distribution

function of the success probabilities of the first 2n trials. We assume that F n converges
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pointwise almost everywhere to some F and

E [q] :=

∫ 1

0

qdF (q) ≥ 1

2
.

We allow for general c.d.f’s F , including those admitting atoms.
We want to characterize the probability that exactly γn out of 2n trials are a

success, with γ ∈ (0, 1), that is,

Pr

(
2n∑
i=1

Xi = γn

)

This would be simple with identical success probabilities Pr (Xi = 1) = q for all i. In
this case, given any γ ∈ (0, 1) with γ2n ∈ N, the probability of exactly γ2n successes
out of 2n trials is well-known to be7

Pr

(
2n∑
i=1

Xi = γ2n

)
= exp [−2nKL(γ, q) + o (n)] (1)

with the Kullback-Leibler divergence,

KL(γ, q) = γ log

(
γ

q

)
+ (1− γ) log

(
1− γ

1− q

)
;

The proof idea is due to Cramér and Touchette (1938): The idea is to perform a
change of measure, the “Escher transform” (Escher, 1932). Considering the binomial
under which the event is not rare but rather typical, Zn ∼ B(2n, γ), (1) follows from
observing that8

Pr
(∑2n

i=1 Xi = γ2n
)

Pr(Zn = γ2n)
= exp [−2nKL(γ, q)] (2)

and that9

Pr(Zn = γ2n) = exp [o(n)] . (3)

For a sequence of independent Bernoulli variables with distinct success probabili-
7Recall that a function f is in o (n) if f(n)

n vanishes to 0 for n → ∞.
8Note that Pr(Zn=γ2n)

Pr(
∑2n

i=1 Xi=γ2n)
= γ

q
2nγ 1−γ

1−q

2n(1−γ)
= exp

[
ln
(

γ
q
2nγ 1−γ

1−q

2n(1−γ)
)]

=

exp
[
2n
[
γ ln(γq ) + (1− γ) ln( 1−γ

1−q )
]]

.
9This is because the p.d.f of the binomial peaks at its mean, implying Pr(Zn = γ2n) ∈ [ 1

2n ]. But
for any sequence (xn)n∈N with xn ∈ [ 1

2n , 1], it holds xn = exp exp [ln(xn)] = exp [o(n)].

8



ties qi, we now show that its rate function minimizes an analogous expected Kullback-
Leibler divergence. For the statement of the result, let B(γ) denote the set of functions
a : [0, 1] → [0, 1] that are integrable with respect to the measure implied by F and
have mean γ,

B(γ) = {a : [0, 1] → [0, 1] :

∫ 1

0

a(q)dF (q) = γ}.

Theorem 1 Consider a sequence of independent Bernoulli random variables (Xi)
∞
i=1

with Pr (Xi = 1) =: qi ∈ [ε, 1− ε] for some ε > 0. Let F n denote the cumulative
distribution function of the first n success probabilities qi. If there is some c.d.f. F

such that
F n converges pointwise almost everywhere to F,

then, for any γ ∈ (0, 1),

Pr

(
2n∑
i=1

Xi = ⌊2nγ⌋

)
= exp

[
−2ncKL + o (n)

]
for

cKL (γ) = inf
a∈B(γ)

∫
q

KL(a(q), q)dF (q). (4)

Proof. In the i.i.d. scenario, the proof via the Escher transform shows that the ratio
(2) between two p.d.f.’s is the relevant term in order to measure point probabilities.
This makes it intuitive why a distance measure between two distributions arises, the
Kullback-Leibler divergence.

When F is a step-function, i.e. the corresponding distribution has finite support,
{p1, ..., pD}, the proof can be extended naturally and is provided here. The proof
highlights how the independence of the Xi implies that the expected Kullback-Leibler
divergence provides the accurate generalization of the i.i.d. result.

We prepare the proof with some notation: Denote by fd ∈ (0, 1) the likelihood of
pd. Let us consider only the first 2n random variables, (Xi)

2n
i=1. Let nd =

∑2n
i=1 1qi=pd

be the number of i for which qi = pd and let their share be ηd = nd

2n
. Given any realized

x ∈ {0, 1}2n, let md (x) =
∑2n

i=1 1qi=pd and xi=1
be the number of successes among the

Xi with qi = pd and let its (empirical) share be ad (x) =
md(x)
nd

.
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To evaluate

Pr

(
2n∑
i=1

Xi = ⌊2nγ⌋

)
=

∑
m′:

∑D
d=1 m

′
d=⌊2nγ⌋

Pr (m (X) = m′) , (5)

the key insight is that the independence of the Xi implies that the likelihood of any

vector of successes m′ ∈
D∏

d=1

{0, ..., nd} is the product of the component-wise success

probabilities;

Pr (m (X) = m′) =
D∏

d=1

Pr (md (X) = m′
d) . (6)

We apply the result (1) of the Esscher transform to each component. For any m′
d ∈

{0, . . . , nd} and a′d =
m′

d

nd
,

Pr (md (X) = m′
d) = exp [−ndKL(a′d, pd) + o(nd)] . (7)

A lower bound for (5) is the maximal probability of a success vector. Since the product
of the exponentials in (7) translates into sums of their exponents, this lower bound is
in terms of the sum of the KL-divergence, weighted by the empirical frequencies nd

of the success probabilities,

Pr

(
2n∑
i=1

Xi = ⌊2nγ⌋

)
≥ max

m′:
∑

m′
d=⌊2nγ⌋

Pr (m (X) = m′)) = exp
[
−2ncKL−D + o (n)

]
(8)

with cKL−D (γ) = minm′:
∑D

d=1 m
′
d=⌊2nγ⌋

∑D
d=1 ηdKLB

(
m′

d

nd
, pd

)
. An upper bound for (5)

is the maximal probability of a success vector times the number of possible success
vectors, #{m′ ∈

∏D
d=1{1, . . . , nd}} ≤ (2n)D. Since (2n)D = eD ln(2n) = eo(n), the

upper bound equals the lower bound,

Pr

(
2n∑
i=1

Xi = ⌊2nγ⌋

)
≤ (2n)D max

m′:
∑

m′
d=⌊2nγ⌋

Pr (m (X) = m′) = exp
[
−2ncKL−D (γ) + o (n)

]
.

(9)
The lower and the upper bound (8) and (9) imply the claim when the support of

F is discrete.10

10Note that the minimizing vector cKL−D (γ) on the finite grid {m′ ∈
∏D

d=1{1, . . . , nd} :∑D
d=1 m

′
d = ⌊2nγ⌋} ∼= {a′ ∈

∏D
d=1{

1
nd

, . . . , nd

nd
} :

∑D
d=1 ηda

′
d = ⌊2nγ⌋

2n ≈ γ} converges to the in-
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In the Appendix, we prove the general case by approximating sequences (Xi)
∞
i=1

with general F from above and below by sequences where F is a step-function. The
monotonicity property recorded in the next Lemma 1 will imply that the point prob-
abilities are then also approximated from above and below; this way, an application
of the squeeze lemma will finally imply the theorem’s formula for general F .

2.2 Comparative Statics

Lemma 1 Consider two sequences (Xi)
∞
i=1 and (X ′

i)
∞
i=1 of independent Bernoulli ran-

dom variables with
Pr (Xi

′ = 1) ≥ Pr (Xi = 1) for all i

(strictly for some i < 2n). Then, for Sn =
∑2n

i=1 Xi and S ′
n =

∑2n
i=1 X

′
i,

Pr [Sn = k] > Pr [S ′
n = k] for k ∈ {1, 2, ..., ⌊E(Sn)− 1⌋} (10)

Pr [Sn = k] < Pr [S ′
n = k] for k ∈ {⌊E(S ′

n) + 1⌋, ..., 2n} . (11)

The proof is established in the Appendix by using a property of Poisson binomial
distributions like Sn: The p.d.f. of Sn is “bell-shaped.”11 It either has a unique mode
or two consecutive modes, with the mode(s) differing from the mean E [Sn] by at most
1 (Darroch, 1964). Thus,

Pr [Sn = k − 1] < Pr [Sn = k] for k ∈ {1, ..., ⌊E [Sn]− 1⌋} (12)
Pr [Sn = k] > Pr [S ′

n = k + 1] for k ∈ {⌊E [Sn] + 1⌋, ..., 2n− 1} . (13)

Given the bell-shape, Lemma 1 makes an intuitive statement: On the left of both
the mode(s) of Sn and S ′

n, the density of the distribution with the lower mode(s)
is strictly higher; on the right of all modes, the density of the distribution with the
higher mode(s) is strictly higher.

The monotonicity property of the point probabilities given by (10) and (11) will
play an important role for establishing the “Condorcet Jury Theorem without sym-
metry”. We will apply it to the point event when a voter is “pivotal”.

fimum cKL (γ) across all vectors of possible realizations from the continuous set [0, 1]D, as n → ∞.
This is because n → ∞ implies nd → ∞ for all d = 1, . . . , D, so the finite grid becomes an arbitrarily
fine approximation of [0, 1]D.

11So, the p.d.f. is convex-concave-convex, and, in particular, the p.d.f. is strictly increasing below
the mode(s) and strictly decreasing above.
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The other tool will be Theorem 1 in connection with the following Lemma 2. The
lemma presents the connection between the asymptotic expected success probability
EF (q) and the minimizing expected Kullback-Leibler divergence

cKL
F (γ) = inf

µ∈B(γ)

∫
q

KL(µ(q), q)dF (q).

This relation will be key in our voting setting. It will allow us to characterize EF (q),
which will correspond to the aggregate behavior of the voters in equilibrium and,
consequently, outcomes, which are determined by the voters’ aggregate behavior.

Lemma 2 Let F and F̃ be the cumulative distribution functions of two random
variables ordered by first-order stochastic dominance, F̃ (q) ≤ F (q) for all q ∈ [0, 1]

(with a strict inequality for some q). For all γ ∈ (0, 1):

EF (q) < EF̃ (q) ≤ γ ⇒ cKL
F (γ) > cKL

F̃
(γ). (14)

EF̃ (q) > EF (q) ≥ γ ⇒ cKL
F (γ) < cKL

F̃
(γ). (15)

The proof of Lemma 2 uses that first-order stochastic dominance implies that
there is a “monotone coupling” between the distributions of F and F̃ ; this is an
instance of Strassen’s theorem.12 A coupling v is a joint measure that preserves the
marginals: For any Lebesgue measurable U, Ũ ⊆ [0, 1],13

v(U × [0, 1]) = Pr
F
(U), (16)

v([0, 1]× Ũ) = Pr
F
(Ũ). (17)

It is “monotone” if

v({(q, q̃) : q ≤ q̃}) = 1 and v({(q, q̃) : q > q̃}) > 0. (18)

The monotone coupling gives us an explicit way to relate the two distributions.
Figure 1 shows an example where the distribution of F has a singleton support and
that of F̃ is binary, illustrating that each q ∈ supp(F ) may not be associated deter-
ministically to some q̃ ∈ supp(F ).

12Strassen’s theorem asserts that there is a coupling with v({(q, q̃) : q ≤ q̃}) = 1; see Theorem
17.59 in Klenke (2020) and the discussion before it. Our definition of monotonicity parallels first-
order stochastic dominance, which likewise includes strict differences. In fact, first-order stochastic
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0 0.2 0.3 0.4 0.5 1
0

1.6 KL(a, 0.2)
KL(a, 0.3)
KL(a, 0.4)

Figure 1: An example where γ = 1
2
, supp(F ) = {0.2}, and F̃ is distributed uniformly

on its support supp(F̃ ) = {0.3, 0.4}. The minimizer of (4) for F is given by aF (0.2) =
1
2

and the minimizer for F̃ is given by aF̃ (0.3) = 1− aF̃ (0.4) = 0.43303. We indicate
the Kullback-Leibler divergence of the minimizers with the three dots.

This requires us to consider an enlarged minimization program allowing random-
ization. For any γ ∈ (0, 1), consider the following pairs (v, a) of couplings v and
measurable functions a,

R(γ) = {(a, v) :
∫
(q,q̃)

a(q, q̃)dv(q, q̃) = γ}, (19)

and the minimization problem

inf
(a,v)∈R(γ)

∫
(q,q̃)

KL(a(q, q̃), q̃)dv(q, q̃). (20)

The enlarged problem has the same solution as the original one since the strict con-
vexity of the Kullback-Leibler divergence implies that any minimizer features a de-

dominance is equivalent to the existence of a monotone coupling defined via (18).
13We denote by PrF (U) the likelihood of q ∈ U given F .
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terministic function a(q) = a(q, q̃) for all q̃ ∈ supp(F̃ );

inf
a∈B(γ)

∫
q

KL(a(q̃), q̃)dF̃ (q) = inf
(a,v)∈R(γ)

∫
(q,q̃)

KL(a(q, q̃), q̃)dv(q, q̃). (21)

The rest of the proof is in the Appendix. We define an explicit coupling m—the
“quantile coupling” or “Frechet-Hoeffding coupling” (see, e.g., Rachev and Rüschen-
dorf, 2006)— show that it is monotone and finally construct a randomization ã so
that

(ã,m) ∈ R(γ)

and which yields a point-wise improvement relative to the minimizer a∗ of (4) for F̃ ;
for all (q, q̃) ∈ supp(m),

KL(a∗(q), q) ≤ KL(ã(q, q̃), q̃), (22)

and the inequality is strict with a positive m-measure. The details are in the Ap-
pendix.

3 Condorcet’s Jury Theorem without Symmetry
As in the example, there are 2n + 1 voters i ∈ {1, ..., 2n+ 2} (she) who choose
between A and B with a simple majority vote. There are two states ω ∈ {α, β},
with Pr (α) = p0 ∈ (0, 1). Other than in the example, voters do not share a common
type, but we allow for private preference types. Moreover, voters can be ex-ante
heterogeneous, drawing their preferences and signals from different distributions.

Each voter has a private signal si ∈ Si from a finite signal set Si ⊂ R and a private
preference type given by a “threshold of doubt” yi ∈ [0, 1]. A voter with a threshold
of doubt y prefers A over B if she believes the probability of α is above y. Voters with
thresholds of doubt y ∈ {0, 1} are “partisans” who prefer A and B, respectively, no
matter their beliefs.14 The signal’s distribution is given by

(
Pri (si = s|ω)ω∈{α,β}

)
s∈Si

,
has c.d.f Ψi,ω in ω, and, conditional on the state, is independent of the preference

14 Here is a simple formulation in terms of payoff types ŷ ∈ R: For a voter with type ŷ, the payoff
from A is 1− ŷ in α and −ŷ in β and the payoff from B is 0 in both states. With this specification,
a voter prefers A whenever she believes the probability of α to be above ŷ. Types with ŷ ≤ 0 and
ŷ ≥ 1 are “partisans” who prefer A and B, respectively, independently of their beliefs. An atomless
distribution of ŷ with R as its support induces a distribution of thresholds of doubt y ∈ [0, 1] (with
atoms at 0 and 1) via y = max{min{ŷ, 1}, 0}.
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type’s distribution, which has a continuous and strictly increasing c.d.f. Φi. Types
are drawn independently across voters and signals independently conditional on the
state.

To consider a large election with asymmetric voters, we fix a sequence of preference
type and signal distributions, varying the number of voters n. We impose the following
uniformity conditions on n. First, there exists some ε > 0 such that the expected
share of A- and B-partisans is bounded away from 1

2
,

1

2n+ 1

2n+1∑
i=1

Φi (0) <
1

2
− ε and 1

2
+ ε < lim

n→∞
inf

1

2n+ 1

2n+1∑
i=1

Φi

(
1−
)

, (23)

and from 0 and 1,

ε ≤ Φi (0) and Φi

(
1−
)
≤ 1− ε for all i ∈ {1, 2, ...} . (24)

Given (23), under full information about the state, the realized majority preference
is A in α and B in β with probability going to 1, as n → ∞; this is a consequence of
Kolmogorov’s strong law of large numbers for non-identically distributed sequences
(see, e.g., Theorem 5.8 in McDonald and Weiss, 2004).

Second, the signals remain boundedly informative, for all i ∈ {1, 2, ...},15

ε ≤ Pr
i
(si = s|ω) ≤ 1− ε for all s ∈ Si, and ω ∈ {α, β} (25)

min
s∈Si

Pri (si = s|α)
Pri (si = s|β)

< 1− ε < 1 + ε < max
s∈Si

Pri (si = s|α)
Pri (si = s|β)

(26)

Third, there is a uniform Lipschitz bound L > 0 for all Φi,

Φi(x)− Φi(y) ≥ L(x− y) for all i ∈ {1, 2, ...} and x > y. (27)

A strategy of voter i is a mapping σi,n : S × [0, 1] → [0, 1], where σi,n (si, yi) is
the probability that voter i votes A with signal si and threshold of doubt yi. Let
σn = (σi,n)

2n+1
i=1 denote the strategy vector. A strategy profile σn is “undominated”

if σi,n (s, 1) = 0 and σi,n (s, 0) = 1 for all i, meaning that partisans vote for their
alternative. All undominated strategy profiles are nontrivial; there is a positive chance

15The first condition (25) can be replaced by the weaker condition that ε
1−ε ≤ mins∈S

Pri(si=s|α)
Pri(si=s|β)

and maxs∈S
Pri(si=s|α)
Pri(si=s|β) < 1−ϵ

ϵ ; using this stronger condition simplifies the exposition of our results.
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of a tie among any 2n voters. Henceforth, we only consider undominated strategies.
An “ (undominated) equilibrium” is some (undominated) profile σ∗

n with σ∗
i,n : S ×

[0, 1] → [0, 1] such that σ∗
i,n (s, y) is best response to σ∗

−i,n for all i ∈ {1, . . . , 2n+ 1},
s ∈ Si, and y ∈ (0, 1).

When Φi = Φj and
(
Pri (si = s|ω)ω∈{α,β}

)
s∈Si

=
(
Prj (sj = s|ω)ω∈{α,β}

)
s∈Sj

for
any two voters i, j, the environment is “(ex-ante) symmetric.” A strategy profile σ∗

n

is symmetric if σ∗
i = σ∗

j for any two voters. Bhattacharya (2013) has shown that, in a
symmetric environment, for any sequence of symmetric (undominated) equilibria, the
probability that A wins in α and B in β converges to 1. Our main result generalizes
this.

Theorem 2 Given a sequence of preferences distributions (Φi)
∞
i=1 and a sequence of

signal distributions
((

Pri (si = s|ω)ω∈{α,β}
)
s∈Si

)∞

i=1

that satisfy the uniform bounds

(23) - (27), and any sequence of equilibria (σ∗
n)

∞
n=1,

lim
n→∞

Pr (A is elected | α; σ∗
n, n) = 1 and lim

n→∞
Pr (B is elected | β; σ∗

n, n) = 1.

3.1 Best Response

This section explains the relation of the voting model to our results on point probabil-
ities of sequences of Bernoulli variables. We show that the point probabilities related
to the “pivotal” voting events fully determine the voters’ best response. Let

qi (ω; σi,n) =

∫
si,yi

σ(si, yi)dΦi(yi)dΨi,ω(si) (28)

be the probability that agent i votes A in state ω. Thus, in state α, a strategy profile σ
implicitly defines 2n+1 independent but not identically distributed Bernoulli random
variables Xi,n (α), with

Pr (Xi,n (α) = 1) = qi (α; σi,n) ,

and similarly in state β,

Pr (Xi,n (β) = 1) = qi (β; σi,n)
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The probability that voter i is pivotal is

Pr (pivi|ω; σ−i,n) = Pr

(
2n∑
j=1

Xj,n (ω) = n

)
.

The posterior probability of α conditional on voter i being pivotal is denoted
Pr (α|s, pivi; σ−i) and the posterior likelihood ratio satisfies

Pr (α|pivi; σ−i,n, n)

Pr (β|pivi; σ−i,n, n)
=

p0
1− p0

Pr
(∑2n

j=1 Xj,n (α) = n
)

Pr
(∑2n

j=1 Xj,n (β) = n
) .

Conditional on being pivotal and signal s ∈ Si, it is

Pr (α|s, pivi; σ−i,n, n)

Pr (β|s, pivi; σ−i,n, n)
=

p0
1− p0

Pri (si = s|α)
Pri (si = s|β)

Pr
(∑2n

j=1 Xj,n (α) = n
)

Pr
(∑2n

j=1 Xj,n (β) = n
) .

Given the strategy profile σ−i,n of the other voters, the strategy σi,n is a best
response for voter i if σi (s, y) = 1 if Pr (α|s, pivi; σ−i,n, n) > y and σi (s, y) = 0 if
Pr (α|s, pivi; σ−i,n, n) < y,

3.2 Representation and Existence of Equilibrium

We follow an idea from Bhattacharya (2013) to represent equilibrium as a fixed point
in beliefs: Consider voter i and suppose her belief conditional on being pivotal is
pi,n = Pr (pivi|ω; σ−i,n). Then, her posterior conditional on signal s ∈ Si is

pi,n Pri(si = s|α)
pi,n Pri(si = s|α) + (1− pi,n) Pri(si = s|β)

. (29)

Hence, the probability that i votes A when playing a best response given a belief
pi,n ∈ (0, 1) is

q̂i (ω; pi,n) =
∑
s∈Si

Φi

(
pi,n Pri(si = s|α)

pi,n Pri(si = s|α) + (1− pi,n) Pri(si = s|β)

)
Pr
i
(si = s|ω) (30)

and
q̂i (ω; 1) = Φi

(
1−
)

.

Given the role of pi,n in (29), Bhattacharya (2013) terms it the induced prior. From
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(30), the induced prior is sufficient to determine the best response voting behavior of
a voter. In turn, given a vector pn = (p1,n, ..., p2n+1,n) of induced priors and the best
response voting probabilities q̂i (ω, pi) from (30), we find a new posterior, denoted
Pr (α|pivi; pn). Given this discussion, for any equilibrium σ∗

n, the induced priors
p∗i,n = Pr

(
α|pivi; σ∗

−i,n

)
must satisfy

p∗i,n = Pr (α|pivi; p∗n) for all i ∈ {1, 2 . . . , 2n+ 1}. (31)

Conversely, any profile of induced priors satisfying (31) induces an equilibrium. We
use the fixed-point property (31) to prove existence and, later, the main result.

Theorem 3 For every n, there exists an equilibrium σ∗
n.

Proof. Fix n. For all pi,n ∈ [0, 1], the vote share q̂i (ω; pi,n) is uniformly bounded away
from 0 and 1 across i given (24), and continuous in pi. It follows that Pr (α|pivi; p−i) is
uniformly bounded away from 0 and 1 across i by some distance δ > 0 and continous
in pn ∈ [0, 1]2n+1. Application of Kakutani’s fixed point theorem establishes the
existence of some p∗n ∈ [δ, 1− δ]2n+1 that solves (31). Picking, for each voter i, the
best-response given the induced prior p∗i,n yields an undominated equilibrium profile
σ∗
n.

3.3 A Bound on Updating Differences implied by Partisans

The difference in the induced prior ratios
(

Pr(pivi|α;pn)
Pr(pivi|β;pn)

)
and

(
Pr(pivj |α;pn)
Pr(pivj |β;pn)

)
of any two

voters i ̸= j is bounded as follows:

Lemma 3 For any i and j, and any induced prior vector pn ∈ (0, 1)2n+1,∏
i′=i,j

min
s∈Si′

(
xi′(α)

xi′(β)
,
1− xi′(α)

1− xi′(β)
,
1− xi′(α)

xi′(β)
,

xi′(α)

1− xi′(β)

)

≤
(
Pr (pivi|α; pn)
Pr (pivi|β; pn)

)
/

(
Pr
(
pivj|α; pn

)
Pr
(
pivj|β; pn

))

≤
∏
i′=i,j

max
s∈Si′

(
xi′(α)

xi′(β)
,
1− xi′(α)

1− xi′(β)
,
1− xi′(α)

xi′(β)
,

xi′(α)

1− xi′(β)

)
,

for xi′(ω) = Pr(si′ = s|ω) for i′ ∈ {i, j} and any ω ∈ {α, β}, with strict inequality
if the maximum (or, minimum) is taken at maxs∈Si′

(
xi′ (α)
xi′ (β)

) (or, mins∈Si′
(
xi′ (α)
xi′ (β)

)) for
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either i′ = i or i′ = j.

The proof is in the Appendix. The lemma implies that the difference between the
induced priors of any two voters is uniformly bounded; given (25)

ε

1− ε
≤
(
Pr (pivi|α; p)
Pr (pivi|β; p)

)
/

(
Pr
(
pivj|α; p

)
Pr
(
pivj|β; p

)) ≤ 1− ε

ε
for all i, j ∈ {1, 2, . . . , 2n+ 1}.

(32)

For the pure common-values setting of Section 1, the lemma states that the differ-
ence in the induced prior ratios is strictly bounded by the inference from any signal
realizations of the two voters,16(

1− r

r

)2

<

(
Pr (pivi|α; pn)
Pr (pivi|β; pn)

)
<

(
r

1− r

)2

(33)

for r = Pr (si = a|α) = Pr (si = b|β) for all i.
Without partisans, the inequalities of the lemma would not be strict. To see this,

recall the sequence of asymmetric (and undominated) equilibria for which information
aggregation fails. In the constructed equilibria, the fourth voter votes for A deter-
ministically, while the fifth votes for B deterministically, and this is supported by the
induced priors

p4,n =
r

1− r
and p5,n =

1− r

r
, (34)

which imply that i = 4 weakly prefers A even after a b-signal and i = 5 weakly prefers
B even after an a-signal. The lemma rules out the possibility of induced prior pairs
such as in (34) whenever each voter is a partisan for A and B with arbitrarily small
probability ε > 0. In other words, the example equilibrium breaks down whenever
there are some partisans.

In the Appendix, we formally prove that all sequences of asymmetric equilibria ag-
gregate information in the example setting when modified with partisans. In the next
Section, we prove this result (Theorem 1) for our model with continuous preference
distributions Φi. Both proofs build critically on Lemma 3.

16The proof of the lemma is based on elementary arithmetic calculations; this means it also
applies to the example setting.
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4 Proof: Equilibria Aggregate Information
We now prove Theorem 2. The first two steps prepare the other two. The third
step uses Lemma 1 and 3 to show that, in equilibrium, all converging sequences
of equilibrium induced priors (pi,n)n=1,...,∞ have an interior limit. The fourth step
shows this implies that the vote shares for A are strictly ordered across the states
asymptotically, as n → ∞. Finally, we prove the theorem by applying our large
deviation tools, Lemma 2 and Theorem 1.

Consider any sequence of equilibria (σ∗
n)

∞
n=1. Let (p∗n)

∞
n=1 be the corresponding

sequence of equilibrium induced prior vectors; for each i,

p∗i,n = Pr (pivi|σ∗
n; p

∗
n, n) .

Equilibrium induced priors must satisfy the fixed point equation (31),

p∗i,n = Pr
(
α|pivi; p∗−i,n, n

)
. (35)

Step 1 For any all pn = (pi,n)
2n+1
i=1 with pi,n ∈ (0, 1) for all i,

q̂i(β; pi,n) ≤ q̂i(α, pi,n) for all i.

Given any i and pi,n ∈ (0, 1), the distribution of the private signals of i induces
a distribution of posteriors (29) in states α and β. Given the bounds on the in-
formativeness of the private signals, (25) and (26), the distribution in α first-order
stochastically dominates that in β. Finally, the claim follows from (30) and since Φi

is strictly increasing.

Step 2 For any δ > 0, there is d > 0 so that for all n ∈ N and all pn = (pi,n)
2n+1
i=1

with pi,n ∈ (δ, 1− δ) for all i,

q̂i(β; pi,n) < q̂i(α, pi,n) + d for all i.

Take any i and pi,n ∈ (δ, 1 − δ). Given the uniform bounds on the informativeness
of the private signals, (25) and (26), there is δ′ > 0 so that the support of the
distributions of posteriors (29) in the states α and β is in [δ′, 1− δ′] for all i. Finally,
given the uniform bounds on the likelihood ratio of the signals, (26), and the uniform
Lipschitz bound for Φi, (27), we see that the probability to vote A is larger in α than
in β by at least some margin d uniformly.

20



Step 3 Voters cannot become certain of the state conditional on being pivotal; that
is, the inference from the pivotal event must remain bounded:

0 < lim
n→∞

inf p∗i,n and lim
n→∞

sup p∗i,n < 1 for all i ∈ {1, 2, . . . , 2n+ 1}. (36)

We prove the claim by contradiction. Suppose limn→∞ p∗1,n = 1.17 By Lemma 3 (and
the implied uniform bound (32)), this implies that the induced priors converge to 1

uniformly, that is, for every δ < 1, we have p∗i,n ≥ δ for all n large enough and all i.
For large enough δ, then n < (1

2
+ ε)2n <

∑2n+1
i=2 qi(β; pi,n), given (23). This together

with Step 1 means that we can apply Lemma 1 to Xi = Xi,n(β) and X ′
i = Xi,n(α) for

i ∈ {1, . . . , 2n+1} (these are the Bernoulli variables given by the voting probabilities
qi(ω; pi,n); compare to Section 3.1), and k = n. This yields that being pivotal is
indicative of β. Consequently, the posterior conditional on being pivotal is below the
prior,

lim
n→∞

supPr
(
piv1|σ∗

n; p
∗
1,n, n

)
≤ Pr (α) ;

this is a contradiction to the starting hypothesis limn→∞ p∗1,n = 1.

We prepare the statement of the next step: Helly’s selection theorem (Helly, 1912)
implies that there is a subsequence (b(n))n∈N for which18

F b(n)
ω (q) =

1

2b(n) + 1
|
{
i : q̂i(ω, p

∗
i,n) ≤ q and i ≤ 2b(n) + 1

}
(37)

converges pointwise to some c.d.f Fω for all states ω ∈ {α, β} and we identify the sub-
sequence with the original sequence to omit the subsequence notation in the following.
The expected vote share for A in ω converges also,

1

2n+ 1

2n+1∑
i=1

q̂i(ω, p
∗
i ) =

∫
q

qdF n
ω (q)

n→∞→
∫
q

qdFω(q) = EFω(q). (38)

Step 4 The expected vote share of A is strictly larger in α than in β for n large
enough,

EFα(q) > EFβ
(q). (39)

17It is sufficient to show the contradiction for any converging subsequence, given that the values
of the sequence are in the compact set [0, 1]. We identify the subsequence with the original sequence
to omit the subsequence notation.

18A reference in English is p. 220 in Natanson (1961).
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Suppose limn→∞ p∗1,n = p̄1 (see Footnote 17). From Step 3, p̄i ∈ (0, 1). Moreover,
Lemma 3 implies δ > 0 and n̄ ∈ N so that δ < p∗i,n < 1− δ for all i and n ≥ n̄. Step 2
then yields some d > 0 such that q̂i,n

(
α; p∗i,n

)
− q̂i,n

(
β; p∗i,n

)
≥ d for all i and n ≥ n̄.

This implies (39), given (38).
We conclude the proof by leveraging our results from Section 2 on the point

probabilities of sequences of Bernoulli random variables: We claim that

EFα(q) >
1

2
> EFβ

(q). (40)

Suppose, for example that EFβ
(q) ≥ 1

2
. Step 2 - 4 imply that the conditions of Lemma

2 are satisfied for F = Fα and F̃ = Fβ. Lemma 2 and Theorem 1 then imply

lim
n→∞

Pr (pivi|α; p∗n)
Pr (pivi|β; p∗n)

= 0 for all i;

this contradicts Step 3. Thus, EFβ
(q) < 1

2
. The analogous argument proves EFα(q) >

1
2
. Finally, an application of Kolmogorov’s strong law of large numbers for non-

identically distributed sequences implies that the realized share of votes for A con-
verges almost surely to the expected share EFω(q) of votes for A in each state. This
together with (40) implies that the full-information outcome is elected,

lim
n→∞

Pr (A is elected | α; σ∗
n, n) = 1 and lim

n→∞
Pr (B is elected | β; σ∗

n, n) = 1,

which was the claim of the theorem.

5 Conclusion
We revisited the classic Condorcet setting in which agents choose between two alter-
natives with a simple majority vote. The “modern’’ Condorcet jury theorem states
that the outcome of strategic voting is the same as under full information about
the state as the number of voters grows large (Bhattacharya, 2013; Feddersen and
Pesendorfer, 1997, 1998), provided that all voters are ex-ante symmetric and when
considering any sequence of symmetric equilibria.

We lifted these symmetry assumptions, allowing for asymmetric equilibria and
voters to draw their types (signals and preferences) from non-identical distributions.
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We provided an example of a sequence of non-trivial asymmetric equilibria for
which information aggregation fails. That is, the consequence of the theorem does
not for asymmetric equilibria, in general. The example equilibrium features a “swing-
voter’s blessing’’ where some voters are more likely to be pivotal with any given voting
choice when it is in their interest. The logic of the equilibrium rests on this swing
voter’s blessing and sufficiently large differences in the voter’s posteriors conditional
on being pivotal.

Our main result shows that such failures of information aggregation cannot happen
in any non-trivial and possibly asymmetric equilibrium when each voter may be a
partisan voter for either alternative, even if just with minimal probability (Condorcet
jury theorem without symmetry). A key step is to establish that the partisans imply
a tight bound on the swing voter’s blessing (tight in the sense that without partisans
it may be violated, as in our example equilibrium.)

On the way, we provide a set of technical results that may be of independent
interest to voting theorists.

6 Appendix

6.1 Proof of Lemma 1

Take any k ∈ {1, . . . , ⌊E(Sn) − 1⌋} and i ≤ 2n for which Pr (X ′
i = 1) > Pr (Xi = 1).

Denoting Sn\i =
∑

j∈{1,...,2n}\{i} Xj,

Pr (Sn = k) = Pr(Xi = 1)Pr
(
Sn\i = k − 1

)
+ Pr(Xi = 0)Pr

(
Sn\i = k

)
. (41)

The sum Sn\i is distributed according to a Poisson binomial distribution. We use
that the p.d.f of Sn\i is “bell-shaped”(Darroch, 1964).19 It either has a unique mode
or two consecutive modes, with the mode(s) differing from the mean E

[
Sn\i

]
by at

most 1; thus,

Pr
[
Sn\i = k − 1

]
< Pr

[
Sn\i = k

]
for k ∈

{
1, ..., ⌊E(Sn\i)− 1⌋

}
, (42)

Pr
[
Sn\i = k

]
> Pr

[
Sn\i = k + 1

]
for k ∈

{
⌊E(Sn\i) + 1⌋, ..., 2n− 1

}
(43)

19So, the p.d.f. is convex-concave-convex, and, in particular, the p.d.f. is strictly increasing below
the mode(s) and strictly decreasing above.
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Together, (41), (42), and (43) show that replacing the variable Xi with X ′
i strictly

decreases Pr (Sn = k) given that Pr (X ′
i = 1) > Pr (Xi = 1). Replacing Xj with Xj′

for j ∈ {1, . . . , 2n} \ {i} iteratively, we can repeat the argument (obtaining a weak
inequality each time) and finally conclude that (10) holds. The argument for (11) is
analogous.

6.2 Proof of Theorem 1

We use the monotonicity property (10) and (11) to show that the rate function for any
sequence (Xi)

∞
i=1 can be “sandwiched” by the rate functions of sequences for which

the success probabilities qi only take finitely many values. In particular, given any
integer D, define X+

D =
(
X+

i,D

)∞
i=1

by

Pr
(
X+

i,D = 1
)
=

⌈qid⌉
D

.

and define
{
X−

i,D

}
by

Pr
(
X−

i,D = 1
)
=

⌊qiD⌋
D

.

This way,
Pr
(
X−

i,D = 1
)
≤ Pr (Xi = 1) ≤ Pr

(
X+

i,D = 1
)

for all i.

Consider any γ ∈ (0, 1) for which EF (q) = limn→∞ E
[

1
2n

∑2n
i=1 Xi

]
> γ. Then,

there is some n̄ such for all n ≥ n̄, it holds E
[∑2n

i=1 Xi

]
> ⌊2nγ⌋. Hence, E

[∑2n
i=1 X

+
i,D

]
>

⌊2nγ⌋ and E
[∑2n

i=1 X
−
i,D

]
> ⌊2nγ⌋ for any D large enough. Now, we apply the mono-

tonicity property (10) and (11), setting k = ⌊2nγ⌋ and X ′
i = X+

i,D or X ′
i = X−

i,D

respectively and obtain

Pr(
2n∑
i=1

X−
i = ⌊2nγ⌋) ≥ Pr

2n∑
i=1

Xi = ⌊2nγ⌋) ≥ Pr(
2n∑
i=1

X+
i = ⌊2nγ⌋). (44)

Our characterization in the main text derives the rate functions cKL−D
+ and cKL−D

−

of the sequences X+
D and X+

D , as functions of the limits F+
D and F−

D of the distribution
of success probabilities. When D → ∞, then F+

D and F−
D converge pointwise almost

everywhere to F .20 Finally, the continuity of the expected Kullback-Leibler divergence
20Specifically, they converge at any q that is not an atom of the distribution corresponding to F .
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∫
q
KL(a(q), q)dF (q) in the measure given by a c.d.f F implies

lim
D→∞

cKL+
D = lim

D→∞
cKL−
D .

Given (44), an application of the squeeze lemma yields that the rate function of
(Xi)

∞
i=1 is

cKL = lim
D→∞

cKL+
D . (45)

This finishes the proof of the theorem in this case. The proof in the case where
EF (q) = limn→∞ E

[
1
2n

∑2n
i=1 Xi

]
< γ is anologous. When EF (q) = γ, then the identity

map µ(q) = q is in B(γ), implying cKL = 0. In this case, the claim of the theorem
follows since the density of the Poisson binomial Sn =

∑2n
i=1 Xi is uniformly bounded

above by 1
2n

= eln(
1
2n

) = eo(n) for n large.21

6.3 Proof of Lemma 2

We consider the case when

EF (q) < EF̃ (q) ≤ γ. (46)

The proof in the other case is analogous.
We start by relating the distributions of F and F̃ with a “monotone coupling”.

We use the “quantile coupling”, also known as “Frechet-Hoeffding coupling”. For any
closed intervals U = [q1, q2] and Ũ = [q̃1, q̃2], it is given by

m(U × Ũ) = λ([F (q−1 ), F (q2)] ∩ [F (q̃−1 ), F (q̃2)]), (47)

where λ is the Lebesgue-Borel measure. It “matches” q ∈ U to q̃ ∈ Ũ with a like-
lihood proportional to the overlap in the quantiles of U and Ũ . Since F̃ first-order
stochastically dominates F , m is monotone. To see why, take any q̃ < q and any
closed intervals U = [q1, q2] and Ũ = [q̃1, q̃2] with q ∈ U and q̃ ∈ Ũ and q̃2 < q1.
Since q̃2 < q1 implies F̃ (q̃2) ≤ F̃ (q−1 ) ≤ F (q−1 ), it must be that m(U × Ũ) = 0. Since

21This can be seen as follows: Since the density of the Poisson binomial can be approximated by
the density ϕ( x−E(Sn)

Var(Sn)
1
2
) where ϕ is the density of the standard normal, with the approximation error

bounded by C√
n

for some universal C > 0; see Theorem 3.5 in Tang and Tang (2023) and Platonov
(1980) for the primary reference.
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we picked arbitrary q̃ < q, the argument implies m({(q, q̃) : q̃ < q}) = 0. The other
monotonicity condition m({(q, q̃) : q < q̃}) > 0 follows since first-order stochastic
dominance implies a closed interval [q1, q2] ⊆ [0, 1] with q1 < q2 so that F̃ (q̃) < F (q)

for all q, q̃ ∈ [q1, q2]; this way, m([q1, q2]× [q2, 1]) > 0.
The proof now constructs a randomization ã so that

(ã,m) ∈ R(γ) and
∫
(q,q̃)

KL(ã(q, q̃), q̃)dm(q, q̃) < inf
a∈B(γ)

∫
q

KL(a(q), q)dF (q). (48)

For this, pick a minimizer a∗ ∈ arg infa∈B(γ)

∫
q
KL(a(q), q)dF (q) and define

a1(q, q̃) = max (a∗(q), q̃),

which satisfies

∫
(q,q̃)

a1(q, q̃)dm(q, q̃) ≥
∫
(q,q̃)

a∗(q)dm(q, q̃) =

∫
q

a∗(q)dF (q) = γ.

Since m is a coupling,
∫
(q,q̃)

q̃dm(q, q̃)) = EF̃ (q̃) < γ. Thus, there is ã so that

(ã,m) ∈ R(γ) and q̃ ≤ ã(q, q̃) ≤ a1(q, q̃) for all (q, q̃). (49)

The rest of the proof establishes an ordering of q, a∗(q), q̃, and ã(q) on the support
of m, and translates this to a pointwise ordering of the Kullback-Leibler divergence.
First, we claim that F - almost everywhere

q < a∗(q). (50)

To see why, note that ∂KL(a∗(q),q)
∂a

= λ holds F -almost everywhere, where λ ∈ R is
the Lagrange multiplier of the minimization problem (4). Second, KL(x, y) is strictly
convex with ∂KL(x,y)

∂x
= 0 at x = y. Therefore, EF (q) < EF (a

∗(q)) implies λ > 0 and
a∗(q) > q almost everywhere.

Second, since either q̃ ≤ a∗(q) or a∗(q) < q̃, the strict part of the monotonicity of
m together with (49) and (50) implies that with strictly positive m-measure, either

q < q̃ ≤ a(q, q̃) ≤ a∗(q), or (51)
q < a∗(q) < q̃ = a(q, q̃). (52)
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The monotonicity of m further implies that, either (51) holds with the strict inequality
q < q̃ replaced by the weak inequality q ≤ q̃ m-almost everywhere or (52) holds m-
almost everywhere. Hence,

KL(a∗(q), q) < KL(ã(q, q̃), q̃) (53)

with strictly positive m-measure and a weak inequality m-almost everyhwere. Given
that the enlarged minimization program has the same solution as (4) (recall (21)),
we obtain the ordering (15) claimed by the lemma for the case EF (q) < EF̃ (q) ≤ γ

considered here.

6.4 Proof of Lemma 3

Fix ω. Given the vector of induced priors p(−i,−,j),n of the 2n − 1 voters other than
i and j, let P (n, n− 1) denote the probability that precisely n others are voting A

and n− 1 others are voting B; likewise, P (n− 1, n) is the probability that precisely
n− 1 others are voting A and n others are voting B. Then,

Pr (pivi|ω; pn) = P (n− 1, n) qj (ω; pj,n) + P (n, n− 1) (1− qj (ω; pj,n)) (54)

voter i is pivotal if either j votes B and precisely n others are voting A and n − 1

others are voting B or if j votes A and precisely n − 1 others are voting A and n

others are voting B. The analogous formula holds for the pivotal likelihood of voter
j.

In what follows, we repeatedly use that for any four positive numbers a, b, c, d

and γ ∈ [0, 1], the inequality max (a
b
, c
d
) ≥ (1−γ)a+γc

(1−γ)b+γd
≥ min (a

b
, c
d
) holds, with strict

inequalities if the maximum and the minimum do not coincide and γ /∈ {0, 1}.
Combining this fact with (54) yields(

Pr (pivi|α; pn)
Pr
(
pivj|α; pn

)) /

(
Pr (pivi|β; pn)
Pr
(
pivj|β; pn

))

≤ max

{
1− q̂i (α; pi,n)

1− q̂j (α; pj,n)
,
q̂i (α; pi,n)

q̂j (α; pj,n)

}
/min

{
1− q̂i (β; pi,n)

1− q̂j (β; pj,n)
,
q̂i (β; pi,n)

q̂j (β; pj,n)

}
. (55)
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Another application of the fact yields

q̂i′ (α; pi′,n)

q̂i′ (β; pi′,n)
=

∑
s∈Si′

Pr(si′ = s|α)σi(s)∑
s∈Si′

Pr(si′ = s|β)σi(s)
< max

s∈Si

(
Pr(si′ = s|α)
Pr(si′ = s|β)

)
(56)

and likewise

q̂i′ (α; pi′,n)

1− q̂i′ (β; pi′,n)
< max

s∈Si

(
Pr(si′ = s|α)

1− Pr(si′ = s|β)

)
, (57)

1− q̂i′ (α; pi′,n)

q̂i′ (β; pi′,n)
< max

s∈Si

(
1− Pr(si′ = s|α)
Pr(si′ = s|β)

)
, (58)

for any i′ = i, j and σi(s) = Φi

(
pi,n Pri(si=s|α)

pi,n Pri(si=s|α)+(1−pi,n) Pri(si=s|β)

)
. The strictness of

the inequality (56) here stems from the uniform bound on the likelihood ratio of the
signals, (26), and the lower bound on the share of the partisans for each alternative,
(24). The upper bounds (55) - (58) jointly prove the upper bound claimed by the
lemma. A parallel argument establishes the lower bound.

6.5 Relation to the Gärtner-Ellis Theorem: Interval vs Point
Probabilities

We start by stating a version of the Gärtner-Ellis theorem for sequences of real-valued
random variables.

Gärtner-Ellis Theorem. (Gärtner (1977); Ellis (1984)) Suppose that (Yn)n∈N is a
sequence of real-valued random variables such that

Λ (t) = lim
n→∞

1

n
lnE

[
etnYn

]
(59)

exists for all t ∈ R. If Λ is differentiable, then, for all γ ∈ (0, 1), it holds that

lim
n→∞

Pr(Yn ≤ ⌊γ2n⌋
n

) = e−ncFL(γ)+o(n)

for

cFL (γ) = inf
x∈[0,γ]

Λ∗ (x) and Λ∗ (x) = sup
t∈R

(xt− Λ (t)).

The function Λ is called the “cumulant generating function” and Λ∗ is called the
“Fenchel-Legendre transform” of Λ.
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Now, we apply the theorem to our setting. Consider a sequence of independent
Bernoulli random variables {Xi}∞i=1 with Pr (Xi = 1) =: qi ∈ [ε, 1− ε] for some ε >

0. As before, suppose that the cumulative distribution function Fn of the first 2n

success probabilities qi converges almost surely to a c.d.f. F . Let Sn =
∑2n

i=1 Xi and
Y2n = 1

2n
Sn. Given the convergence of Fn to F , the limit Λ exists for Y2n = 1

2n
Sn and

is differentiable in t. Application of the theorem to (Y2n)n∈N yields

Pr (Sn ≤ ⌊γ2n⌋) = e−2ncFL(γ)+o(n). (60)

In what follows, we connect the point probability Pr (Sn = ⌊γ2n⌋) to the interval
probability Pr (Sn ≤ ⌊γ2n⌋), by using the properties of the Poisson Binomial distri-
bution. For example, consider the case where

lim
n→∞

E
[
Sn

2n

]
> γ.

Then, Darroch (1964)’s result about the p.d.f. of the Poisson Binomial, (12), implies

Pr (Sn = ⌊x2n⌋) ≤ Pr (Sn = ⌊γ2n⌋) for all x ∈ [0, γ] ,

and thus

Pr (Sn ≤ ⌊γ2n⌋) =
⌊γ2n⌋∑
r=1

Pr (Sn = r) ≤
⌊γ2n⌋∑
r=1

Pr (Sn = ⌊γ2n⌋) = 2nPr (Sn = ⌊γ2n⌋)

⇒ 1

2n
Pr (Sn ≤ ⌊γ2n⌋) ≤ Pr (Sn = ⌊γ2n⌋)

Finally, since 2n = eln(2n) = eo(n), the interval probability formula (60) implies
Pr (Sn = ⌊γ2n⌋) ≥ e−2ncFL(γ)+o(n) and therefore also the equality

Pr (Sn = ⌊γ2n⌋) = e−2ncFL(γ)+o(n).

Comparison with our Theorem 1 implies an identity of the minimizing expected
Fenchel-Legendre transform cFL and the minimizing expected Kullback-Leibler di-
vergence cKL

cFL (γ) = cKL (γ) for all γ ∈ (0, 1). (61)

This identity is discussed in more generality in Lemma 6.2.13 in Dembo (2009).
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6.6 The Condorcet Jury Theorem in the Example Setting
Modified with Partisans

We show that all sequences of asymmetric equilibria aggregate information in the
setting from Section 1 when modified with partisans. Formally, the setting is as in
Section 1; only the voters do not share a common preference type anymore. We
assume that the voters’ preference types are drawn independently from an identical
distribution where each voter strictly prefers A in both states with probability ε > 0

(A-partisan), strictly prefers B in both states with probability ε > 0 (B-partisan),
and otherwise has a type where she obtains a payoff of 1 when the state matches
outcome and 0 otherwise (the previous common preference type). (Clearly, one needs
to assume that ε < 1

2
for this specification to be well-defined and for all types to have

positive probability.)

Theorem 4 Consider the setting from Section 1 modified with partisans. For any
sequence of (undominated) equilibria (σ∗

n)
∞
n=1,

lim
n→∞

Pr (A is elected | α; σ∗
n, n) = 1 and lim

n→∞
Pr (B is elected | β; σ∗

n, n) = 1.

Proof. The first part of the proof (Step (1)) parallels Step 4 from the proof of
Theorem 1; albeit it requires a different argument.

As in the earlier proof, we use Helly’s selection theorem and transition implicitly
to a subsequence for which the c.d.f F n

ω (q) of the empirical distribution of the first
2n voters’ probabilities qi(ω; σ

∗
i,n) to vote A converges pointwise some c.d.f Fω for

ω ∈ {α, β}. The convergence in distribution implies that the expected vote share for
A converges in each state,

1

2n+ 1

2n+1∑
i=1

qi(ω; σ
∗
i,n) = EFn

ω
(q)

n→∞→ EFω(q). (62)

Step 1 The expected vote share of A is strictly larger in α than in β for n large
enough,

EFα(q) > EFβ
(q). (63)

Suppose not. This implies that the share of sincere voters goes to zero, as n → ∞.
Lemma 3 implies that there is at most one type of non-sincere non-partisan voter;
either all non-sincere non-partisans are indifferent after a b-signal and vote A after an
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a-signal, or all are indifferent after an a-signal and vote B after a b-signal (recall the
discussion after Lemma 3). Without loss, we consider only the first case here. The
proof in the other case is analogous.

Two observations: First, our initial assumption implies that the share of non-
sincere non-partisans with strategies converging to always voting A goes to 1, as n →
∞. This means that, the expected vote share of A approximates

∑2n+1
i=2 qi(ω; σ

∗
i,n) ≈

2n(1 − ϵ) in both states. Since the share of B-partisans is strictly less than half,
ε < 1

2
, the majority threshold n is below 2n(1 − ϵ) and thus below the expected

vote share in both states. Second, since all non-sincere non-partisans vote A after
a and not always A after b, the probability to vote A is weakly larger in α for all
voters, qi(α; σ∗

i,n) ≥ qi(β; σ
∗
i,n) (and strictly larger for some i since in any undominated

equilibrium not all voters vote deterministically for some alternative).
The two observations allow us to apply Lemma 1, which yields that being pivotal

is indicative of β. Consequently, the posterior conditional on being pivotal is below
the prior,

lim
n→∞

supPr (pivi|σ∗
n, n) ≤ Pr (α) for all i.

Given the uniform prior Pr (α), this implies that all non-partisans strictly prefer B

after a b signal. We arrive at a contradiction to the earlier implication that almost all
non-sincere non-partisans use a strategy that converges to voting A with probability
1.

The remainder of the proof is identical to the final part of the proof of Theorem
1 that follows Step 4 therein.
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