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This paper provides and studies a model for the optimal design of candidate selection processes
in hiring, promotion, and task allocation decisions. A principal has the capacity to evaluate a
finite number of candidates with coarse quality tests. We show that it is never optimal to use
tests of the same difficulty uniformly across candidates—though using uniform tests is a common
practice in many industries. Further, asking the candidates to self-report their qualities leads to
first-best allocation decisions when combined appropriately with subsequent testing. This holds
even when the firm is restricted to test candidates simultaneously. This result suggests that
data-driven decision processes relying on tests should be viewed as a complement to traditional
approaches like interviews rather than as a replacement.

1 Introduction
Being able to select good employees is fundamental to the success of any firm. Hiring, promo-
tion, and task allocation decisions are just some examples of numerous managerial decisions
where candidate selection is important. However, candidate selection is typically difficult since
there is incomplete information about candidate quality. Available signals about candidate
quality— educational degrees, certificates, previous work performance and evaluations—are
useful parameters; however, they are oftentimes considerably limited in their informativeness.
For example, educational degrees may be incomparable across countries or schools. Similarly,
previous work performance evaluations may be incomparable across evaluators, branches, and
offices, or may be simple unreliable. Firms can also not simply ask candidates to reveal their
qualities since they may have incentives to be untruthful about their weaknesses, past problems
in the work place, et cetera. For these reasons, some practitioners go so far as to describe tra-
ditional hiring tactics such as interviews and screening of resumes as “notoriously unreliable”.1
To get more reliable information on candidates, more and more companies begin to use a data-
driven approach that relies on tests. In line with this, the empirical literature documents that
test-based worker selection results in more productive hires (Autor and Scarborough, 2008),
and that employees hired with testing have about 15% longer tenures than those hired without
testing (Hoffman, Kahn and Li, 2018).2
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1See, for example, this practitioner’s blog by a data science startup providing assistance to companies with
test-based hiring methods (https://blog.criteriacorp.com/the-limitations-of-simulation-tests/)
or this practitioner’s commentary in the Harvard Business Review (https://hbr.org/2020/06/
how-to-design-a-better-hiring-process).

2A study conducted by Gallup concluded that companies that selected the top 20 percent of applicants
based on talent assessments increased productivity by 10 percent and decreased turnover by 10 percent.
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Theory ought to anticipate these developments in order to accompany firms in designing
selection processes with tests efficiently and in order to inform regulatory decision-making.
However, the previous literature in personnel economics provides few theoretical models of
test-based hiring.3 None of the existing work has analyzed how to optimally design the testing
of multiple candidates and the interaction with self-reports of the candidates. In this paper,
we provide a stylized mechanism design framework to characterize qualitative features of such
optimal selection processes.

In the model, a firm tries to allocate a task or a job to one candidate from a finite pool of
candidates. The quality of each candidate is uncertain and is drawn from a commonly known
distribution. The firm may perform a pass-fail test with each of the candidates and it is assumed
that candidates with a higher ability are more likely to pass any given test (monotonicity). We
think of the test primarily as a computerized evaluation, speaking to the data-driven evaluation
approaches that are by now prevalent in many industries.45 Our model is general enough to
accomodate testing strategies that are non-uniform in the sense that tests may vary across
candidates. This way, we will be able to evaluate the efficiency of the common practice to use
the same “standardized” test for all candidates. Further, we consider several model variants,
including one in which tests may be chosen contingent on a message by the candidate about
her quality. We may think of the message stage as a formalization of selection tools in which
candidates are asked to report about themselves, like in traditional interviews. This model
variant allows to study how to efficiently combine testing with asking for self-reports.

The first main insight is that optimal tests are non-uniform. That is, for the firm, it is
optimal to confront candidates with tests of different difficult levels. This result is not driven by
any heterogeneity of the candidates since our model deliberately considers ex-ante symmetric
candidates. The result is robust across settings: It holds when tests can be chosen contingent
on a cheap-talk message and when they cannot; it holds when the firm is constrained to perform
all tests simultaneously and when it can evaluate candidates sequentially. This finding suggests
that the common practice of using uniform, standardized test procedures comes at an efficiency
loss.

The second main insight is that asking candidates for a self-report about their abilities
is a very powerful tool of evaluation—contrary to the intuition that self-reports may not be
informative since all candidates would simply pretend to be very qualified. Formally, we show
that the firm can combine self-reports with quality tests in a way so that the first-best candidate
is selected with probability one. In contrast, self-reports alone do not lead to any information
transmission about candidate quality. The intuition for the result is that tests can be used
to incentivize truth-telling. If a candidate knows that the statements and announcements he
makes may be tested later on, this gives incentives not to lie. Incentivizing truth-telling is an
additional argument for using non-uniform tests for each candidate. This result highlights that
a data-driven hiring process relying on tests should be viewed as a complement to traditional

3Chapter 2 of Lazear and Gibbs (2014) provides an excellent discussion of test-based screening in hiring and
its relevance. Autor and Scarborough (2008) study the effect of biased hiring tests on minority discrimination.
Carroll and Egorov (2019) consider a setting complementary to ours with one candidate that has multiple skill
dimensions; we discuss their work momentarily in more detail. More distantly related, there is a literature of
matching and search models in which information about worker productivity arrives exogenously after the hire
as the worker’s tenure increases (see e.g., Jovanovic, 1979); workers are layed off if their productivity reveals to
be low, similar to a probationary test period.

4According to a survey by Psychology Today, about 80% of Fortune 500 companies use pre-employment
testing as a recruiting strategy.

5Alternatively, one may also think of the test in our model as a practical test or a probation period in which
the firm observes the worker’s performance before a final hiring decision.
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interviews rather than as a replacement. We describe in more detail how tests and self-reports
may be combined efficiently in Section 3.3.2.

We show that optimal mechanisms have further desirable properties. First, they have a high
level of comparability. This qualifies testing over other quality signals (e.g., school diploma or
previous work evaluation) that are typically available, but often lack this degree of compara-
bility. Specifically, we show that optimal pass-fail tests are of a cutoff type: A candidate passes
only if the quality level exceeds a given cutoff. Cutoff tests are ordered completely according
to their difficulty through the cutoff. This way, whenever several candidates pass their test,
the test results are easily comparable. Comparability does not necessitate using the same test
for all candidates, but only a system of tests that has a consistent order. Second, we show that
there is no trade-off between efficiency and discrimination: Optimal test mechanisms can be
designed in a non-discriminatory way—although they combine different tests across candidates.
Namely, they can be designed so that, for a given candidate quality, each candidate faces any
given test with the same likelihood, independent of the candidate’s label.6

The paper contributes to the literature on asymmetric information in personnel economics,
in particular on hiring decisions. There is a long-standing and large theoretical literature that
has studied methods how firms and society might solve the informational problem. Notably,
the literature on labor market signaling pioneered by Spence (1978) analyzes how candidates
may costly signal their types, for example, through engaging in educational activities. Jobs
may be designed in a way that induces employees to self-select into the “right” jobs, that is,
jobs indirectly “screen” the applicants (see e.g., Salop and Salop, 1976; Stiglitz, 1975). This
paper is concerned with quality tests, that is, mechanisms that can directly screen quality types
of candidates.

This paper contributes to the literature on mechanism design with partial verification, as
pioneered by Green and Laffont (1986). In Green and Laffont (1986), different types of agents
face different restrictions regarding the set of reports that they can send to the principal.
The interpretation is that there is an exogenous structure of tests and certain reports are
detected as false with certainty. In this paper, we analyze optimal tests, that is, the testing
environment is not exogenous. We follow Caragiannis, Elkind, Szegedy and Yu (2012) who
generalize the framework by Green and Laffont (1986) and allow for probabilistic verification.
The firm in our model can use probabilistic tests, that is, a given type may both pass and fail
the test with positive probability. However, we show that the monotonicity of quality tests
implies that optimal tests are non-probabilistic. They are simple cutoff tests that check if the
quality exceeds a given cutoff level. Complementary to our paper, Carroll and Egorov (2019)
consider a firm that can verify one of multiple skill dimensions of a single candidate. They
characterize conditions under which the firm can achieve first-best outcomes by using a random
verification strategy contingent on the candidate’s report. In contrast, we consider a setting
with multiple candidates and in which the firm only needs to use coarse, binary tests instead
of having to verify exact types. We compare the efficiency of uniform and non-uniform testing.
In particular, we establish an efficiency result similar to Carroll and Egorov (2019), showing
that an appropriate non-uniform testing strategy can incentivize candidates to reveal all the
privately held information about their quality and lead to first-best outcomes.

In the main text, we consider a model of a selection process that makes stark assumptions.
We believe, however, that the economic messages that the paper’s results convey are of a more

6Typically, there is also no legal reason for firms to adhere to uniform testing. For example, in the US, in the
guidelines of the Equal Employment Opportunity Commission (EEOC), the single most important property
of a testing procedure to be legally compliant is job relatedness. Tests must measure job-related skills and
abilities.
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general nature. In Section 3.5, we discuss several generalizations (noisy tests, costly tests) and
how the results extend to those generalized settings.

2 Model
There is a principal (he) and multiple candidates (she) i ∈ {1, . . . , n} = N with n > 1. The
principal has one task that he can allocate to one of the candidates. A candidate receives a
utility v = 1 when the task is allocated to her. The candidates have quality types θi ∈ R that
are drawn independently from a log-concave distribution F with continuous density f > 0.7
The principal receives utility θi when allocating the ask to a candidate with quality θ. When
the task is not allocated to any candidate, the principal receives a utility of zero from an outside
option.

The following sections study several tools of candidate selection. Section 3.1 and 3.2 analyze
quality tests. Section 3.3.1 studies self-reports. Finally, in Section 3.3.2, we analyze how tests
and self-reports can be combined efficiently.

3 Mechanisms of candidate selection
A (quality) test for candidate i is a weakly increasing function Ti : R → [0, 1] from types θ to
the likelihood Ti(θ) that candidate i passes the test if her type is θ. The monotonicity of Ti
captures that candidates of better quality are more likely to pass a quality test. The principal
can run one test on each candidate i ∈ {1, . . . , n}. We think of n as a capacity constraints
on the number of tests. We assume E(θi) = 0, so that the outside option of utility zero has a
simple interpretation: It can be understood as allocating the good to a random candidate n+1
(which cannot be tested given the capacity constraint). he set of outcomes is N0 = {0, . . . , N}
where the outcome 0 means that the principal chooses the outside option.

3.1 Simultaneous tests

First, we consider the scenario in which the principal is constrained to run the quality tests
on all of the candidates simultaneously. This captures real-life scenarios in which candidates
literally have to be evaluated simultaneously, e.g., due to time constraints. The simultaneity
may also capture situations in which the principal delegates the tests to several subordinates
or departments that are constrained in their communication.

After observing all test results, the principal has to allocate the task to one of the candidates
or choose the outside option. Formally, a test mechanism σ is a profile of tests and a mapping
a : {0, 1}N → N0 from profiles of test results to outcomes.

Theorem 1 characterizes the simultaneous test mechanisms that maximize the principals
payoff. It shows that the optimal simultaneous test mechanisms are characterized by two
properties. First, optimal test mechanisms utilize cutoff tests T . These are tests that pass the
candidate only if a candidate’s quality exceeds a cutoff level τ > 0. Formally,

T (θ) =

{
0 if θ < τ

1 if θ ≥ τ.

7Many standard distributions are log-concave. For example, the normal distribution, the exponential dis-
tribution, and the gamma distribution. See Bagnoli and Bergstrom (2005) for a larger list of commonly used
distributions that are log-concave.
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Second, optimal tests mechanisms are non-uniform. That is, heterogeneous test levels are
applied to the n candidates.

Theorem 1. Any optimal simultaneous test mechanism uses a cutoff test with cutoff level τi
for each candidate i = 1, . . . , n. There is a permutation p of the candidates such that the cutoff
levels are strictly ordered, τp(1) < τp(2) < . . . < τp(n). The mechanism allocates the task to the
candidate i with the most difficult test (the one with the highest cutoff level τi) among those
who pass their test.

The proof of Theorem 1 is in the Appendix. Here, we sketch the argument.
Take a test profile (T ′

1, . . . , T
′
n) and note that for any test T ′

i that is not a cutoff test, there
is a cutoff test T ′′

i that is passed with the same probability by a random candidate. Since the
distribution of θ is absolutely continuous,

E(θ|T ′′
i (θ) = 1) > E(θ|T ′

i (θ) = 1) and E(θ|T ′′
i (θ) = 0) < E(θ|T ′

i (θ) = 0). (1)

The payoff of the principal from allocating the task optimally given test results (t1, . . . , tn) ∈
{0, 1}n is u(t1, . . . , tj) = max (maxj∈N E(θj|Tj = tj),E(θ)). Using (1), we show in the Appendix
that the distribution of u given the test profile (T ′

1, . . . T
′
i , T

′
n) is strictly first-order stochastically

dominated by the distribution of u given the test profile (T ′
1, . . . T

′′
i , T

′
n) in which the cutoff test

T ′′
i replaces the original test for candidate i. This implies that the principal’s expected payoff

is higher. This shows that any optimal test mechanism only involves cutoff tests.

Algorithm. Next, we provide a recursive algorithm for the optimal cutoffs of the tests.
For this, denote Vk denote the principal’s expected payoff from an optimal simultaneous test
mechanism when there are k ≥ 0 candidates, where V0 = E(θ) is the value of the outside
option.8 Take any optimal profile of cutoff tests given by cutoff levels τ1, . . . , τn. In any
optimal mechanism, the task is given to the highest candidate passing her test and the principal
chooses the outside option if all candidates fail their test since E(θ|θ < τ) < E(θ) for all τ > 0.
Further, since the candidate’s quality is ex-ante symmetric, we can relabel the candidates so
that τ1 ≤ . . . ≤ τn. With this labeling, the principal gives the task to candidate i = 1 only if all
candidates j > i fail their tests. Conditional on this event, the task is allocated to i = 1 only
if she passes her test and otherwise the principal’s expected payoff is given by Vi−1. Hence,
conditional on the candidates j > i failing their tests, the principal’s expected payoff is

Vi = Pr(θ ≥ τi) E(θ1|θ ≥ τi) + Pr(θ ≤ τi) Vi−1, (2)

for i ∈ N . Note that Vi is defined recursively.
The first-order condition with respect to τi is f(τ1)(τi − Vi−1) = 0, where f > 0 is the

continuous density of the type distribution. Hence,

τi = Vi−1. (3)

for all i ∈ N . Combining (2) and 3, we see that Vi are strictly increasing in i. Hence, the
cut-offs τi are strictly increasing in i and the optimal test is non-uniform.

8Optimal simultaneous test mechanisms exist by an application of Kakutani’s fixed point theorem since they
are characterized by finitely many cutoff levels τ1, . . . , τk ∈ R and since the expected payoff of the principal is
continuous in the cutoff levels.
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3.2 Sequential tests

We consider the scenario in which the principal can test the candidates sequentially. At each
point of time t = 1, . . . , n, the principal runs a test on candidate i = t. The set of quality
tests is denoted T . A history ht at time t is a collection of the tests run on the candidates
i < t together with their pass-fail results, and Ht is the set of histories ht. We generalize
the notion of a test mechanism. A (sequential) test mechanism σ is a collection of functions
ψt : Ht → T for t = 1, . . . , n, mapping histories before time t to quality tests and a mapping
a : {0, 1}N → N0 from profiles of test results to outcomes. A test mechanism is incentive-
compatible if the principal makes an optimal choice at each history ht, that is, if the test
mechanism corresponds to a perfect Bayesian equilibrium (Fudenberg and Tirole, 1991). In
the following, we use the terms incentive-compatible test mechanism and equilibrium test
mechanism interchangeably.

Theorem 2 shows that the qualitative results of Theorem 1 extend to sequential test mech-
anisms. Equilibrium test mechanisms use cutoff tests and are non-uniform. The proof is in
Appendix 5.

Theorem 2. Take any equilibrium test mechanism. Then, for any history ht, the firm uses a
cutoff test. At any history ht, the test applied to candidate t has a strictly higher cutoff than
the test of any candidate j < t that passed her test, given ht. The task is allocated to the last
candidate that passes her test. If all candidates fail their tests, the firm chooses the outside
option.

Note that Theorem 2 implies that later candidates typically face more difficult tests.

3.3 Are self-reports useful?

We analyze the usefulness of asking the candidates for self-reports. 3.3.1 considers the scenario
in which the principal can ask for reports, but has no access to quality tests. Section 3.3.2
then considers the scenario in which the principal has both access to self-reports and to quality
tests.

3.3.1 Self-Reports.

We consider the scenario in which the principal asks the candidates to send in a report, e.g.
about their type, and then, based on the reports, chooses how to allocate the task. Formally,
the principal chooses a message set M . A strategy of a candidate i is a mapping from types
to distributions of messages, ηi : [0, 1] → ∆(M). Further, the principal chooses an allocation
mechanism ϕ : Mn → Rn+1 where ϕi(m1, . . . ,mn) specifies the likelihood of outcome i ∈ N0

given any profile of reports (m1, . . . ,mn) sent by the candidates. Any mechanism (M,ϕ) defines
a Bayesian game of the candidates. Take any mechanism (M,ϕ) and take any equilibrium
η = (η1, . . . , ηn) of the corresponding Bayesian game. Then, given η, any type θi of candidate
i chooses a message that maximizes the likelihood of her being allocated the task. Thus, the
likelihood of allocating the task to candidate i is independent of her type ηi and E(θi|ϕi(θi) =
1) = E(θi). Since the argument applies to all candidates i = 1, . . . , n,∑

i=1...,n

Pr(θi = 1) E(θi|ϕi(θi) = 1) = E(θ1),

given that types are identically distributed across candidates. We conclude:
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Theorem 3. Self-reports alone do not allow the principal to improve over random candidate
selection.

3.3.2 Combining self-reports and tests.

The next result, Theorem 4, shows that combining self-reports together with quality tests allows
to allocate the task always to the candidate with the highest quality. Moreover, to allocate
the task optimally, it is sufficient if the principal has access to simultaneous tests. Comparing
this result with the efficiency of self-reports and quality tests alone (Theorem 2 and Theorem
3) shows that self-reports and quality tests are complementary tools.

Formally, we consider the scenario in which the principal commits to a joint allocation and
test mechanism. This is a message set M , a mapping ψ : Mn → T n, specifying the profile
of tests (T1, . . . , Tn) to run on the candidates after seeing a report profile (m1, . . . ,mn), and
a mapping ϕ : Mn × [0, 1]n → N0 from report profiles and profiles of pass-fail test results to
outcomes. Any joint mechanism defines a Bayesian game of the candidates. A joint mechanism
is direct if the message set is identical to the type set, Mi = R for all i ∈ N , and an equilibrium
σ of the Bayesian game induced by a direct mechanism is a truth-telling equilibrium if σ(θi) = θi
for all i = 1, . . . , n and θi ∈ R.

Theorem 4. There is a direct joint allocation and test mechanism and a truth-telling equi-
librium in which the task is assigned to the candidate with the highest quality with probability
1.

Proof. Consider the following joint mechanism. Let M = R, and for any report profile
m = (m1, . . . ,mn). Let ψ(m) ∈ T n be the profile of cutoff tests evaluating if each candidate
has at least the quality that she reports. That is, given m, the quality test for candidate i is

Ti(m)(θi) =

{
0 if θi < mi,

1 if θi ≥ mi.

Given the test results, the mechanism allocates the task to the candidate with the highest report
among those who passed their test. The following shows that truth-telling is an equilibrium,
thereby finishing the proof of Theorem 4. Suppose that all candidates j ̸= i report truthfully.
Hence, all candidates j ̸= i pass their cutoff tests. If candidate i reports mi > θi, she fails the
test and is not allocated the task for sure. This is not profitable. If candidate i reports mi < θi,
she passes the test and is allocated the task whenever maxj ̸=i θj < mi. If she reports truthfully,
mi = θi, she passes the test and is allocated the task whenever maxj ̸=i θi < θi, hence, with a
weakly higher probability than when reporting mi < θi. We conclude that reporting mi < θi
is not profitable either.

3.4 Optimal mechanisms that are non-discriminatory

We argue that there is an optimal mechanism that does not discriminate against any candidate.
By this, we mean that the mechanism is anonymous : permuting the labels i = 1, . . . , n of
the candidates does not affect the distribution of tests that a given candidate faces or the
distribution of outcomes. Note that the optimal joint test and allocation mechanism of Theorem
4 is anonymous since tests and outcomes do not depend on labels, but just reports of the
candidates.
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Further, consider any optimal profile of simultaneous tests as in Theorem 1. If the firm
randomizes uniformly over the given profile and any permutation of it, this random test mech-
anism is anonymous. That is, it does not discriminate any candidate by its label. Similarly,
uniformly randomizing the order of the candidates in any sequential mechanism yields an
anonymous mechanism.

3.5 Extensions

Costly tests. In many settings, tests are costly. We do not model costs explicitly, but
impose an exogenous restriction on the time or equivalently the number of candidates that
can be evaluated. If there would be explicit cost c > 0 for running a test on a candidate,
the principal would stop evaluating candidates at a history ht as soon as the cost exceed the
expected benefit of testing an additional candidate. This would endogenize the finite number
of candidates that is evaluated.

Noisy tests. Consider the alternative setting in which, for each candidate, a random signal
si ∈ R is drawn from an exogenous signal distribution that depends on the true ability of
the candidate, and the principal can only run test mechanisms that evaluate the realized
signal. Hence, tests are noisy in the sense that a candidate of a given quality may pass a
given test, but may also fail the test, depending on the realization of the noisy signal. In this
alternative setting, the type and signal distribution jointly induce a distribution of posterior
quality pi = E(θi|si). Recall that the principal’s objective is to maximize the average posterior
quality of the candidate who is allocated the task. Therefore, for the purposes of analyzing
optimal choices of the principal, this alternative setting is equivalent to the model in Section
3.2 if we let the type distribution equal the induced distribution of posteriors pi. We conclude
that it is without loss to consider a model in which tests are not “noisy”, that is, in which tests
can discriminate types and not just signals of types.

4 Conclusion
We have provided and analyzed a model for the optimal design of candidate selection pro-
cesses. Applications include hiring, promotion, and task allocation decisions. Two main find-
ings emerge: First, it is never optimal to use tests of the same difficulty uniformly across
candidates. This observation is important because it is a common practice in many indus-
tries to rely on standardized test procedures that are uniform. Second, asking the candidates
to self-report their skills and abilities leads to first-best allocation decisions when combined
appropriately with subsequent testing. This result suggests that a data-driven hiring process
relying on tests should be viewed as complementary to traditional interviews rather than as a
replacement.

We provided further results to qualify the optimal non-uniform testing mechanism. We
show that it is consistent with high levels of comparability and can be designed in a way that
is non-discriminatory.

We conclude with an observation related to discrimination: Our results also show that
optimal tests increase in their difficulty level over time if testing is sequential; compare to
Theorem 2. Intuitively, this is because firms will try to find candidates that are better than
the ones they already evaluated. If the timing of the tests correlates with non quality-related
characteristics of the candidates, this may imply discrimination. While we are not aware of
any instance where such correlation between candidate characteristics and timing is prevalent,
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this observation may inspire to re-think the classical dichotomy of the discrimination litera-
ture (for recent reviews of the discrimination literature, see Bertrand and Duflo, 2017; Charles
and Guryan, 2011). Much of this literature categorizes discrimination as one of two types:
Taste-based discrimination (Becker, 1957) and statistical discrimination (Arrow, Ashenfelter
and Rees, 1973; Phelps, 1972). While this binary distinction is important, it does not include
other types of discrimination that may be also relevant. Our observation suggests that some
part of discrimination may be driven by natural properties of hiring procedures that arise from
optimizing behaviour of firms and only happen to correlate with the candidates’ characteris-
tics. Similarly, the political science literature has started to analyze the empirical relevance of
discrimination that arises out of strategic behaviour: e.g., Bateson (2020) provides evidence
that individuals hesitates to support a candidate out of concern that others will object to the
candidate’s identity.
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5 Appendix

5.1 An auxiliary result

We denote a generic profile of test results by t = (t1, . . . , tn) ∈ {0, 1}n and a generic profile
of (quality) tests by T = (T1, . . . , Tn). The set of all profiles of tests is T . Any distribution
G ∈ ∆(T ) of test profiles induces a joint distribution R(G) of profiles of tests and profiles of
test results. For any G and any realization of tests and test profiles T ′ = (T ′

1, . . . , T
′
n) and

t′ = (t′1, . . . , t
′
n), denote the posterior profile by

p(T ′, t′) = (E(θ1|T ′
1(θi) = t′1, T1 = T ′

1), . . . ,E(θn|T ′
n(θn) = t′n, Tn = T ′

n)).

For any given profiles of tests and test results, the payoff of the principal when allocating the
task optimally is

u(T ′, t′) = max
j∈N

(E(θj|T ′
j(θj) = t′j, Tj = T ′

j),E(θ))

Fix the tests and test results for a subset J ⊂ N of the candidates. That is, consider
the event E0 = {(t′1, . . . , t′n), (T ′

1, . . . , T
′
n) : T

′
j(θj) = t′j, Tj = T ′

j for all j ∈ J} for some given
(T ′

j , t
′
j)j∈J . Suppose that there are two distributions G−J and G′

−J of test profiles and test
results of the candidates N \ J with the following properties. First, there is i ∈ N \ J , and
tests T ′

i , T
′′
i ∈ T so that the realized test of i is T ′

i with probability 1 given G and T ′′
i with

probability 1 given G′. Second,

Pr(T ′
i (θi) = 1) = Pr(T ′′

i (θi) = 1), (4)
E(θi|T ′

i (θi) = 1) > E(θi|T ′′
i (θi) = 1), (5)

E(θi|T ′′
i (θi) = 1) ≥ max

j∈J
(E(θj|T ′

j = t′j, Tj = T ′
j),E(θ)), (6)

Third, the joint distribution of the tests and test results of the candidates N \ J ∪ {i}
conditional on E0 and conditional on any realization of i’s test result is the same given G−J

and G′
−J ,

R(G|E0 ∩ {(T, t) : (Ti, ti) = (T ′
i , t

′
i))}) = R(G′′|E0 ∩ {(T, t) : (Ti, ti) = (T ′′

i , t
′
i))}) (7)

for any t′i ∈ {0, 1}.

Lemma 1.

E(u(T ′, t′)|E0;G
′) > E(u(T ′, t′)|E0;G). (8)

Proof. Consider any profile of tests and test results of the candidates N \J∪{i}, (T ′
k)k∈N\J∪{i}

and (t′k)k∈N\J∪{i}, and any test result t′i ∈ {0, 1} of candidate i. The unique profile of tests and
test results consistent with E0 and t′i that can realize given G is

(T̂, t̂) = ((T ′
1, . . . , T

′
i , . . . , T

′
n), (t

′
1, . . . , t

′
n)). (9)

The unique profile of tests and test results consistent with E0 and t′i that can realize given G′
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is

(T̄, t̄) = ((T ′
1, . . . , T

′′
i , . . . , T

′
n), (t

′
1, . . . , t

′
n)). (10)

The profiles only differ in the test performed on i. Given (4) and (7) and since the types of
the candidates are independent, the likelihood of (T̂, t̂) conditional on E0 given G is the same
as as the likelihood of (T̄, t̄) conditional on E0 given G′. Further, (4) implies

u(T̂, t̂, ) ≥ u(T̄, t̄)

max
j∈N

(E(θj|T̂j(θj) = t̂j, Tj = T̂j),E(θ)) ≥ max
j∈N

(E(θj|T̄j(θj) = t̄j, Tj = T̄j),E(θ))

with a strict inequality if the profile of tests and test results of the candidates N \ J ∪{i} is so
that

max
j∈N

(E(θj|T̂j(θj) = t̂j, Tj = T̂j),E(θ)) = E(θi|T̂i(θi) = t̂i, Ti = T̂i), and (11)

max
j∈N

(E(θj|T̄j(θj) = t̄j, Tj = T̄j,E(θ)) = E(θi|T̄i(θi) = t̂i, Ti = T̄i). (12)

To establish Lemma 1, it is sufficient to show that the likelihood of profiles of tests and test
results of the candidates N \ J ∪ {i} so that (11) and (12) hold is not zero. For this, note that
if all canidates j /∈ J ∪ {i} fail, and candidate i passes, (11) holds. This is, because of (6) and
because E(θk|T ′

k = 0) ≤ E(θ) for all k and any test T ′
k ∈ T .

5.2 Proof of Theorem 1

Take any optimal simultaneous test T ′ = (T ′
1, . . . , T

′
n). It remains to show that for any i ∈ N ,

T ′
i is a cutoff test. Suppose, on the contrary, that there is an candidate i for which T ′

i is not a
cutoff test. Denote by T ′′

i the cutoff test that lets the candidate i pass with the same probability
as T ′

i ,

Pr(T ′
i (θ) = 1) = Pr(T ′

i (θ) = 1)

Note that

E(θ|T ′′
i (θ) = 1) > E(θ|T ′

i (θ) = 1), and
E(θ|T ′′

i (θ) = 1) < E(θ|T ′
i (θ) = 1).

Consider the test profile T ′′ = (T ′
1, . . . , T

′′
i , . . . , T

′
n) that arises from T ′ by replacing T ′

i with T ′′
i .

Denote by G and G′ the corresponding distributions of profiles of tests and test results that
put probability one on T ′ and T ′′ respectively. Then, G and G′ satisfy (4) - (7) for E0 = ∅.9 An
application of Lemma 1 implies that the principal is strictly better off using T ′′ than T ′. This
contradicts with the optimality of T ′. We conclude that any optimal test mechanism consists
only of cutoff tests.

9Note that (6) holds since J = ∅ and since E(θ|Ti(θ) = 1) ≥ E(θ) for any test Ti ∈ T since all tests are
monotone.
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5.3 Proof of Theorem 2

First, we prove another auxiliary result.

Lemma 2. For any optimal sequential test mechanism σ, any history ht that occurs with
positive probability given σ, and test T ′

i performed on an candidate i at time t given σ and ht,

E(θi|T ′
i (θi) = 1) > max

j<t
(E(θj|T ′

j(θj) = 1),E(θ)) (13)

Proof. Take an optimal test mechanism σ and any history ht that arises with strictly positive
probability. Suppose that following ht, at time t, the principal uses a test T ′

i on candidate i = t
and that (13) does not hold.

In the following, we construct another sequential mechanism σ′ that yields a strictly higher
expected payoff to the principal than σ. This sequential mechanism coincides with σ for all
histories that are not consistent with ht, but differs from σ in the continuation play after ht.

Denote M = maxj∈N (E(θj|ht),E(θ)). Since there are only finitely many continuation
histories after ht that can occur with positive probability, we can find ϵ > 0 so that

x̄ = ϵ+max (M, max
h∞=(ht,ht>0) with Pr(h∞)>0

max
j∈N\{i}

E(θj|h∞)) <∞ (14)

Here we use the notation h∞ for final histories, and h>t for the continuation history after ht,
so that h∞ = (ht, h>t).

Now, modify the continuation play after ht as follows. Following ht, perform the cutoff test
Tx̄ with cutoff x̄ on i instead of the test T ′

i . Hence, given the new strategy σ′, the candidate i
is less likely to pass her test following the history ht since we increased the difficulty of i’s test.
Following ht and a pass result of i, do not modify the continuation testing strategy. Following
ht and a fail result modify the continuation testing strategy so that the distribution of the
sequence of tests performed on the candidates j > t conditional on ht is the same given σ and
σ′. Finally, the principal allocates the task optimally given the test results of all candidates.
Note that, given (14), this implies that the principal allocates the task to i whenever she passes
her test.

Following the history ht, averaging over final histories, the principal is strictly better off
given σ′ compared to σ. This is because the principal strictly benefits from running a more
difficult test on i and allocating the task to i whenever she passes the test. In comparison,
under σ, it was never optimal to allocate the task to i following ht. We conclude that the
principal is strictly better off using σ′ compared to σ. This contradicts with the optimality of
σ. This finishes the proof by contradiction, establishing Lemma 2.

Now, we provide the proof of Theorem 2. First, note that Lemma 2 implies that the
condition (6) is satisfied by an optimal sequential test mechanism at any on-path history.
Therefore, Lemma 1 and Lemma 2 together imply that an optimal sequential test mechanism
only involves cutoff tests.

Second, recall that the distribution of the types is log-concave and absolutely continuous
with a density f > 0. This implies that, for any τ, τ ′ ∈ R,

τ > τ ′ ⇔ E(θ|θ > τ) > E(θ|θ > τ ′); (15)

see, for example, Burdett (1996). In the following, we combine Lemma 2 and (15) to prove
the statement from Theorem 2 about the dynamics of the cutoff tests used. Take any history
ht and denote by τ(ht) the maximal cutoff of a test that a candidate j < t has passed, given

12



ht (set τ(ht) = −∞ for t = 0). Then, the principal evaluates the candidate t with a test that
has a cutoff τ(t) so that E(θ|θ > τ(t)) > E(θ|θ > τ(ht), given Lemma 2. Then, (15) implies
τ(t) > τ(ht).
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