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Abstract

Voters decide between two policies in a majority election. All voters

share a commonly known preference type but are uncertain about which

policy is better for them. They can acquire private information about the

policy consequences at a cost. Thus, political information is a public good.

In all equilibria, voters under-invest in political information. We identify

another source of inefficiencies: equilibrium mis-coordination. When the

marginal cost of information are arbitrarily low, there are two equilibria,

ordered by the information effort of the voters. In a large electorate, only

the high effort equilibrium is asymptotically efficient. The result makes

a case for information initiatives not only targeted at cost reductions but

also at stimulating a culture of high informational effort.

We revisit the question of information acquisition of voters; in particular,

the classical model of Martinelli (2006). Voters (or citizens) decide between two

policies, A and B, in a majority election. All voters share a commonly known

preference type but are uncertain about which policy is better for them. They

can acquire private information about the policy consequences at a private cost.

Thus, political information is a public good.

The public good nature of political information implies that voters will under-

invest into information. This under-investment can be severe when the electorate
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is large: Then, each individual voter has a negligible probability of affecting the

outcome and may not undertake sufficient costly efforts to get informed, so that

election outcomes are not consistent with the preferences of the voters under

full information and, thus, welfare-inefficient. This observation of informational

inefficiency goes back to Downs et al. (1957).

Martinelli (2006) has made the observation that, while a voter’s individual

incentives to acquire may be small in a large electorate, the election may nev-

ertheless aggregate the small but many pieces of information across the large

number of voters so that outcomes are full-information equivalent and efficient.

His work elegantly formalizes the “horse-race” between a growing number of

voters and the information acquired by each individual voter. He identifies the

critical condition for the existence of sequences of equilibria, indexed by the num-

ber of voters, that are asymptotically efficient. In other words, the conditions

under which the under-investment problem is not too “severe” as to impact the

possibility of efficient outcomes in large elections.1

This paper shows that the public good nature of information in voting settings

implies another source of inefficiencies, besides that of under-investment. There

is an equilibrium coordination problem. Namely, given Martinelli (2006)’s con-

dition, there exist asymptotically efficient equilibrium sequences but also (non-

trivial) inefficient equilibrium sequences.2 The coordination problem is severe in

the sense that the inefficient equilibrium sequences exist even when the cost of

information are arbitrarily low. Further, they exist for a generic set of parame-

ters.

The exact condition for existence is that the voters are not indifferent between

the two policies given their prior belief. Without loss, we assume that they prefer

policy A.3 This “bias” towards A translates into equilibrium behaviour: In any

(non-trivial) equilibrium, voters mix between voting for A without additional

1Following Martinelli (2006), the literature has analyzed in more depth the conditions
on voter preferences and information cost that allow for efficient outcomes in large elections
(Martinelli, 2007; Triossi, 2013; Oliveros, 2013). More distantly related work has focused on
design features, such as optimal decision rules and committee size (see, e.g. Persico, 2004;
Koriyama and Szentes, 2009).

2With non-trivial, we mean that in these equilibria, all voters acquire some information.
There exist other trivial equilibria in which all citizens vote for the same policy, and no voters
acquires any information.

3The case of indifference is non-generic. However, this does not mean that it is unimportant.
In fact, many classical economic models, like the quasi-linear setting in the standard mechanism
design with transfers framework, consider non-generic but yet important scenarios.
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costly information on the one hand, and costly acquiring an informative binary

signal s ∈ {a, b} about the state and voting according to the realized signals (A

after a and B after b) on the other hand.

The equilibria differ along the level of the voters’ informational investment:

In the inefficient equilibrium, the share of citizens that vote without costly in-

formation is higher than in the efficient equilibrium. Likewise, for those that

acquire costly information, the quality of the acquired information is lower as

well.

The multiplicity is driven by complementarities in the information acquisi-

tion behaviour, as follows: In the inefficient equilibrium, the higher share of those

voting for A without information biases the election towards A so that A wins

with a comparably high expected margin of victory in both states. Importantly,

the incentives to costly acquire information vary with the closeness of the elec-

tion and are lower when the election is less close. This way, the relatively low

information acquisition in the inefficient equilibrium sustains itself. In contrast,

in the efficient equilibrium, the election is more close to being tied in expectation,

sustaining a higher level of information acquisition.

The equilibrium multiplicity may seem reminiscent of results in the literature

on costly voting: e.g., the low and high turnout equilibrium in the participation

games of Palfrey and Rosenthal (1983). This stream of literature has provided

arguments showing that only one of these equilibria is “robust”: in particular,

the high turnout equilibrium is eliminated by strategic uncertainty about pref-

erences or cost (Palfrey and Rosenthal, 1985), or about the number of voters

(Myerson, 1998). In contrast, in our setting, both equilibria are robust to vari-

ous forms of strategic uncertainty, as results in a companion paper show (Heese,

2022). In the companion paper, we propose a similar model to formalize the in-

formational competition between political interest groups. The paper is general

enough to embed a version of this paper’s common interest model, with strategic

uncertainty about preferences, information cost, and prior beliefs of the voters.

The same equilibrium multiplicity persists.4

Our result may bear relevance for the design of initiatives targeted at the

issue of badly informed electorates. Meta-analyses find no evidence that standard

initiatives—door-to-door canvassing and digital information dissemination—that

4In the terminology of the companion paper: if all voters share a common interest under
full information, they form one “interest group”.
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only target the reduction of information cost, have any effect (Dunning et al.,

2019). Our result makes a case for initiatives that are also targeted at stimulating

a culture of high informational effort.

The rest of the paper is structured as follows: Section 1 restates the model

as in Martinelli (2006). Section 2 characterizes the best response and the equi-

librium conditions. Section 3 presents the main result. Section 4.2 dicusses the

under-investment problem, including an sketch of the “horse-race”-argument be-

hind Martinelli (2006)’s efficiency result. Section 5 presents a sketch of proof for

the main result. Section 6 has concluding remarks.

1 Model

The following restates the model from Martinelli (2006) in its original notation:

There are 2n + 1 ≥ 3 voters (or citizens), two policies, A and B, and a binary

state z ∈ {zA, zB}. The voters hold a common prior. The prior probability

of state zA is qA(0, 1). The prior probability of the state zB is qB = 1 − qA.

Voters receive a utility of U(d, z) if the outcome is d and the state z. We denote

U(A, zA) − U(B, zA) = rA and U(B, zB) − U(A, zB) = rB and assume that

rA, rB > 0. So, all voters prefer A in zA and B in zB. Further, we assume

qArA > qBrB so that the outcome zA maximizes the expected utility of all voters

given the prior belief.5

The timing is as follows: Each voter chooses the precision x ∈ [0, 1
2
] of her

binary, private signal s ∈ {sA, sB}, that is 1
2
+ x = Pr(sA|zA) = Pr(sB|zB).

When choosing precision x, the voter bears a cost C(x). We assume that C is

three times continuously differentiable, C(0) = 0, and C ′(x), C ′′(x), C ′′′(x) > 0

for x > 0. The state and private signals realize. After observing the private

signals, all citizens vote simultaneously. Finally, the outcome is decided by simple

majority rule.

A pure strategy is a triple (x, vA, vB) where x ∈ [0, 1
2
] specifies the precision

choice, vA specifies which policy citizens vote for after observing signal sA, and vB

specifies which policy citizens vote for after observing signal sB. A mixed strategy

α is a probability distribution over the set of pure strategies. A voting equilibrium

5The counter-case qArA < qBrB yields qualitatively the same results. Just in the knife-edge
case qArA = qBrB , the inefficient equilibrium sequence does not exist.
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is a symmetric mixed Bayes Nash equilibrium. A voting equilibrium that has a

strategy (x, vA, vB) with x > 0 in its support is called voting equilibrium with

information acquisition.

2 Best Response and Equilibrium Conditions

We characterize the best response. Fix one of the voters and the strategy α of

the others. Whenever the votes of the other citizens do not split into n votes for

A and n votes for B, the strategy of the fixed voter does not affect the outcome.

Thus, when comparing the expected utilities from two strategies, it suffices to

consider the “pivotal” counter-event. Denoting by q(z;α) the likelihood that a

citizen votes for A in state z ∈ {zA, zB} given α, the likelihood of the pivotal

event is

Pr(piv|z;α) =
(
2n

n

)[
q(z;α)(1− q(z;α)

]n
(1)

for z ∈ {zA, zB}. Applying Bayes’ rule,

Pr(z|piv;α) = Pr(z)Pr(piv|z;α)∑
z∈{zA,zB} Pr(z)Pr(piv|z;α)

. (2)

The next Lemma shows that the pivotal likelihoods (1) completely characterize

the best response.

Lemma 1 Let C ′(0) = 0. For any α with q(z;α) ∈ (0, 1) for z ∈ {zA, zB}, there
is p, p ∈ [0, 1] and x : [p, p] → [0, 1

2
] so that the unique best response is

• (0, B,B) if Pr(zA|piv;α) < p,

• (x(p), A,B) if p < Pr(zA|piv;α) < p,

• (0, A,A) if p < Pr(zA|piv;α).

Further, p, p only depend on Pr(zA|piv;α) and Pr(zB|piv;α).

Clearly, when the voter knows that the state is zA, voting A without costly

acquiring an informative signal about the state is optimal. Conversely, when the

voter knows that the state is zB, voting B is optimal. The lemma states that,
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in contrast, for beliefs p in an intermediate interval, acquiring some information

x(p) and “voting with the signal”, i.e. for A after a and for B after b, is optimal.

Formally, let us compare the expected utility of a voter when following the

strategy (0, B,B), (x,A,B), or (0, A,A). When choosing (x,A,B) this is

Pr(piv|zA;α)qA
[
U(A, zA)(

1

2
+ x) + U(B, zA)(

1

2
− x)

]
+ Pr(piv|zB;α)qB

[
U(B, zB)(

1

2
+ x) + U(A, zB)(

1

2
− x)

]
− C(x) (3)

plus the constant utility from the non-pivotal event. The expected utility from

(0, Y, Y ) for Y ∈ {A,B} is

Pr(piv|zA;α)qAU(Y, zA) + Pr(piv|zB;α)qBU(Y, zB). (4)

plus the constant utility from the non-pivotal event. Subtracting Pr(piv|zA;α)qAU(B, zA)+

Pr(piv|zB;α)qBU(A, zB) from both expressions and re-arranging yields the indif-

ference conditions[
Pr(piv|zA;α)qArA + Pr(piv|zB;α)qBrB

]
(
1

2
+ x)− C(x)

= Pr(piv|zY ;α)qY rY , (5)

Evaluation of these indifference conditions shows the interval structure of the

best response as in Lemma 1. To see why, fix Pr(piv;α) = Pr(piv|zA;α)qA +

Pr(piv|zB;α)qB and divide both sides of (5) by it. For y = A, the difference of

the left and right hand side of (5) is decreasing in Pr(zA|piv;α) = Pr(z)Pr(piv|z;α)
Pr(piv|zB ;α)

.

Thus, for any x > 0, there is unique p ∈ (0, 1) so that the voter is indifferent

between (x,A,B) and (0, A,A). Similarly, there is unique p ∈ (0, 1) so that the

voter is indifferent between (x,A,B) and (0, B,B). Further details of the proof

of Lemma 1 are relegated to the Appendix.

Equilibrium Conditions. The bias towards A given the prior, qArA > qBrB

will imply that equilibrium behaviour is shifted towards voting A: In any vot-

ing equilibrium with information acquisition, voters mix between a strategy

(x,A,B) and (0, A,A): Such equilibria are equivalently characterized by pairs

(x, δ) ∈ (0, 1
2
] × (0, 1] so that the mixed strategy α(x, δ), in which the agent

chooses the pure strategy (x,A,B) with probability (1 − δ) and (0, A,A) with
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probability δ, satisfies two conditions. The first equilibrium condition (6) states

that the marginal cost of acquiring the information precision x > 0 must equal

the marginal benefit of doing so:6

Pr(piv|zA;α)qArA + Pr(piv|zB;α)qBrB = C ′(x), (6)

or, equivalently, that the derivative of the expected utility of (x,A,B) with

respect to x is zero. The second equilibrium condition states that the voters

are indifferent between the strategies (x,A,B) and (0, A,A), that is, (5) holds

for y = A and x = x(p). The proof of this equilibrium characterization can be

found in Martinelli (2006).7 In the following, we identify voting equilibria with

information acquisition with pairs (x, δ) ∈ (0, 1
2
]× (0, 1].

3 Main Result

An equilibrium sequence (αn)n∈N has asymptotically efficient outcomes if both

the likelihood that A gets elected in zA and the likelihood that B gets elected in

zB converge to 1 as n → ∞, given (αn)n∈N, and it has asymptotically inefficient

outcomes otherwise.

Theorem 1 Let C ′(0) = C ′′(0) = 0.

1. There is an equilibrium sequence with asymptotically efficient outcomes.

2. There is a sequence of voting equilibria with information acquisition that

has asymptotically inefficient outcomes

The existence of an equilibrium with asymptotically efficient outcomes given

C ′(0) = C ′′(0) = 0 is shown in Martinelli (2006).8

6To obtain (6), take the first-order derivative of the left hand side of (6) and set it equal
to zero.

7See the proof of Theorem 4 and Theorem 1 therein.
8Martinelli (2006) also shows that the aggregate cost converge to zero in the equilibrium

with efficient outcomes as n → ∞. This implies that even when taking into account the cost
of information, outcomes are approximately utilitarian efficient in large electorates. Strictly
speaking, the argument is only provided for the case when qArA = qBrB . However, the same
argument generalizes to the case qArA > qBrB .
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The observation of an equilibrium multiplicity, with an inefficient equilibrium

is novel. None of the previous literature has suggested that such an equilibrium

would exist.

The proof of the novel result of Theorem 1 is in Appendix 7.3. It shows

that, given the inefficient sequence of equilibria with information acquisition,

the likelihood that the policy A is elected, converges to 1 as n → ∞. Thus, the

equilibrium sequence is inefficient since all voters strictly prefer policy B over A

in state zB.

The inefficient equilibrium is sustained by the following logic: There is a

comparably high share of voters choosing the prior-optimal strategy (0, A,A).

Unlike the asymptotically efficient equilibrium, it satisfies δ > 2x when n is

large. This condition implies that A receives a larger vote share in both states

and that the election is more close to being tied in state zB than in zA, making

(0, A,A) a less attractive strategy; compare to Lemma 1.9 In equilibrium, the

share of voters choosing (0, A,A) exactly offsets the prior preference for (0, A,A)

so that voters are indifferent between (0, A,A) and (x,A,B).

Theorem 1 highlights that even if all voters share a common preference

type and the marginal cost of information are arbitrarily low, voters may mis-

coordinate on an inefficient equilibrium. It shows that the public good nature of

political information creates to sources of inefficiencies: first, there is an ineffi-

ciency from “under-investment” into political information relative to the socially

optimal participation behaviour in all equilibria. This is well-known from the

literature (Martinelli, 2006). Second, there is an equilibrium coordination prob-

lem. This second problem persists even when the marginal cost of information

are arbitrarily low. In contrast, given C ′′(0) = 0, when the electorate grows

large, in the efficient equilibrium sequence, the individual investments of each

voter become small sufficiently “slow” relative to the growing number of vot-

ers so that aggregating the pieces of information across all voters, the election

outcomes are almost always optimal.

We sketch the intuition behind this “horse-race” argument in Section 4.2.

In Section 5, we outline the logic of the existence argument for the inefficient

equilibrium in sequence in detail.

9For any strategy α given by a pair (x, δ) ∈ (0, 1)2, the likelihood that a citizen votes A in
z is given by q(zA;α) = (1 − δ)( 12 + x) + δ and by q(zB ;α) = (1 − δ)( 12 − x) + δ respectively.
A simple calculation shows that δ > 2x implies 1

2 < q(zB ;α) < q(zA;α).
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4 The Under-Investment Problem

Political information is a public good in this setting. If a voter acquires infor-

mation, she is bearing the cost privately, while all voters with the same interest

benefit from her casting a more informed ballot.

As a consequence, in any equilibrium, the voters acquire less information

than the welfare-maximizing symmetry strategy would prescribe. That is, there

is under-investment.10

The basic intuition behind this under-investment problem goes back to Downs’

argument that a rational voter should only require very little or no costly infor-

mation in a large electorate, which can be formalized as follows: When the elec-

torate grows large, n → ∞, the likelihood that the vote of a single citizen affects

the outcome, goes to zero. As a consequence, the voters’ precision x—solving

(6)—goes to zero as well. If, on the contrary, the voter would take into account

the utilitarian welfare of all voters, this would not be an immediate implication.

In this case, the voters’ choice of precision would equate

(2n+ 1)
[
Pr(piv|zA;α)qArA + Pr(piv|zB;α)qBrB

]
= C ′(x), (7)

given the strategy α of the others; compare to (6). Now, if α implies vote shares

sufficiently close to 1
2
, i.e., q(z;α) ≈ 1

2
, the pivotal likelihood is approximately

of the order n− 1
2 .11 and the socially optimal precision would not go to zero as

n → ∞.12

Importantly, as Martinelli (2006) has shown, given the condition C ′′(0) =

0 from Theorem 1, asymptotically efficient equilibria exist despite the under-

investment problem. In this sense, under this condition, the under-investment is

not severe. In Section 4.2, we provide a compact argument sketching the intuition

behind this result and why C ′′(0) = 0 is the critical condition. For simplicity, we

consider the polynomial cost functions C ′(x) = xd so that C ′′(0) = 0 is equivalent

to d > 2. The argument shows that, if d > 2, any sequence of equilibria αn with

q(zA;αn) ≥ 1
2
and q(zB;αN) ≥ 1

2
must have asymptotically efficient outcomes.

10We show this formally in the Appendix. For simplicity, we provide the argument only for
the case when qArA = qBrB that is treated centrally in Martinelli (2006).

11Compare to the Stirling approximation of the pivotal likelihood in the Appendix, (28).
12A similar observation has been made by Evren (2012) who analyzed a model of costly

voting with altruistic voters.
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Section 4.1 prepares by introducing some notation.

4.1 Informativeness of Equilibrium Sequences

For any sequence of equilibria (αn)n∈N given by a sequence of pairs (xn, δn)n∈⋉

and any n, let

δn(z;αn) =
q(z;αn)− n

2n+1

s(z;αn)
. (8)

for z ∈ {zA, zB}. This measures the distance between the expected vote share

and the majority threshold in multiples of the standard deviation s(z;αn) of the

vote share distribution for z ∈ {zA, zB}, where s(z;αn)
−1 =

√
(2n+1)

q(z;αn)(1−q(z;αn))
.13

A normal approximation of the distribution of the number of A-votes shows that,

as n → ∞, the probability that A gets elected in ω converges to14

lim
n→∞

Pr(A|z;αn) = lim
n→∞

1− Φ(−δn(z;α)). (9)

Here, Φ(·) is the cumulative distribution of the standard normal distribution. So,

the asymptotic distribution of the outcome policy only depends on limn→∞ δn(z;αn) ∈
R ∪ {∞,−∞}.

We call limn→∞ δn(zA;αn)− δn(zB;αn) the informativeness of an equilibrium

sequence. The informativeness is positive if the aggregate effect of the voters’

information acquisition on vote shares is large enough so as to impact outcomes.

Precisely, given (9), this is a necessary condition for the asymptotic outcome

distribution to be different in the two states.

13Let qn = q(z;αn). The number vn of A-votes follows a Binomial distribution with variance
(2n+1)qn(1− qn). So, the vote share

vn
2n+1 of A follows a distribution with standard deviation

s(ω;σn).
14Let qn = q(z;αn). Take the normal approximation B(2n + 1, qn) ≃ N ((2n + 1)qn, (2n +

1)qn(1 − qn)) of the distribution of the number of A-votes. It shows that the probability

that there are more A-votes than B-votes converges to limn→∞ 1 − Φ(
(2n+1)( n

2n+1−qn)

((2n+1)qn(1−qn))
1
2
) =

limn→∞ 1 − Φ(−δn(z;αn)). Note that we are applying the Lindeberg-Feller version of the
central limit theorem for the normal approximation, which also applies to triangular arrays of
random variables.
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4.2 The Possibility of Asymptotically Efficient Outcomes

Let C ′′(0) = 0. Take a sequence of equilibria (αn) = (xn, δn)n∈N with q(zA;αn) ≥
1
2
and q(zB;αn) ≤ 1

2
. Suppose that the outcomes are not asymptotically effi-

cient. Given (9), this implies that limn→∞ δn(z;αn) is finite for some state z.

We proceed in two steps to establish a contradiction: First, we show that the

informativeness of the equilibrium sequence is finite. Second, we establish, by

the “horse-race” argument, that the informativeness of the equilibrium must be

infinite.

Suppose that the informativeness is infinite. Thus, limn→∞ δn(z;αn) is finite

in one state, e.g., z = zA, but not in the other, z = zB. We observe that the

normal approximation (9) also holds locally,15

lim
n→∞

Pr(piv|z;αn)(2n+ 1)s(z;αn) = lim
n→∞

ϕ(δn(z;αn)), (10)

where ϕ the density of the standard normal distribution. Thus,

lim
n→∞

Pr(zA|piv;αn)

Pr(zb|piv;αn)
= lim

n→∞

Pr(zA)

Pr(zB)

ϕ(δn(zA;αn))

ϕ(δn(zB;αn))
(11)

diverges and voters become almost certain that the state is zA conditional on

being pivotal. But this implies that the best response is for all voters to vote A;

compare to Lemma 1, which, in turn, implies limn→∞ δn(z;αn) = ∞, contradict-

ing the initial assumption. We conclude that the informativeness is finite.

Suppose that the informativeness is finite. What matters for the “informa-

tiveness” of the aggregate voting behavior is the distance between the expected

vote share in the two states in terms of standard deviations,

lim
n→∞

δn(zA;αn)− δn(zB;αn) = lim
n→∞

q(zA;αn)− q(zB;αn)

s(zA;αn)

= lim
n→∞

2x(1− δ)

s(α;σn)
. (12)

Here, we used the definition (8) of s(zA;αn) and that limn→∞
s(zA;αn)
s(zA;αn)

= 1, which

is implied by a finite informativeness. Hence, the relevant comparison is how

15The local central limit theorem is due to Gnedenko (1948). The version that we apply
is the one for triangular arrays of integer-valued variables as in Davis and McDonald (1995),
Theorem 1.2. Compare also to the equation (11) therein.
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fast the precision x decreases relative to how fast the standard deviation of the

vote share increases. The following shows that the critical condition in this

“horse-race” is if d > 2.

Observe that, given C(X) = xd

d
with d > 2, the precision acquired by the

voters is of an order larger than the pivotal likelihood.16

This is a direct consequence of the first-order condition (6). Now, denote sn =

s(zA;αn) and qn = q(zA;αn). Given (10), the pivotal likelihood is asymptotically

proportional to ((2n + 1)sn)
−1. Since ((2n + 1)sn)

−1 = sn(qn(1 − qn))
−1, it is

asymptotically proportional to the standard deviation sn.
17 Combining this with

the first observation, we see that the standard deviation vanishes relative to the

precision xn of the voters. Finally, (12) implies that, under the best response,

the informativeness diverges to infinity.

5 The Equilibrium Coordination Problem

In this section, we sketch the constrution of the inefficient equilibrium sequence of

Theorem 1. The proof leverages a generalized version of the Poincaré-Miranda-

Theorem (Miranda, 1940), a fixed point theorem equivalent to Brouwer’s. The

generalized version relaxes the condition under which the theorem applies. This

relaxation is crucial for our purposes since the standard conditions are not sat-

isfied.

Lemma 2 (Generalized Poincaré -Miranda Theorem)

Take any continuous f, g : [0, 1]× [0, 1] → [−1, 1]2. If

f(0, t) < 0 for all t, (13)

f(1, t) > 0 for all t. (14)

16The first-order condition (6) implies xd−1
n = Pr(piv|zA;α)qArA+Pr(piv|zB ;α)qBrB . Thus,

limn→∞ Pr(piv|z;α) = limn→∞ xd−2
n = 0 for d > 2 since xn → 0 as n → ∞, given that (6) and

that the pivotal likelihoods converge to zero. The latter can be seen formally from the Stirling
approximation in (28).

17Recall that ((2n + 1)sn)
−1 is the standard deviation of the Binomial distribution of the

number of vote shares. Note that ((2n+1)sn)
−1 =

[
(2n+1)(qn(1−qn))

]− 1
2

= sn(qn(1−qn))
−1

since sn = ( (2n+1)
qn(1−qn)

)−
1
2 ; see (8) and thereafter.
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and

g(r, 0) > 0 if f(r, 0) = 0, (15)

and

g(r, 1) < 0 if f(r, 1) = 0, (16)

then, there is (r0, t0) ∈ (0, 1)2 such that f(r0, t0) = g(r0, t0) = 0.

The lemma clearly also holds on any compact domainD ⊆ R2 other than [0, 1]2.18

The proof of Lemma 2 is provided in a companion paper with two co-authors,

(Ekmekci et al., 2022). The key step is to show that the first two conditions

ensure that there is a continuous function h : [0, 1] → [0, 1] so that f(h(t), t) = 0

for all t. The third and fourth condition yield g(h(0), 0) > 0 and g(h(1), 1) < 0

and ensure that—by an application of the intermediate value theorem—there is

t0 so that g(r0, t0) = 0 for h(t0) = r0.

To construct the inefficient equilibrium sequence of Theorem 1, we apply

Lemma 2 to the functions19

f(x, δ) = max
x∈[0, 1

2
]
Pr(piv|zB;α(x, δ))qBrB(

1

2
+ x)

−Pr(piv|zA;α(x, δ))qArA(
1

2
− x)− C(x), (17)

g(x, δ) = MB(x, δ)− C ′(x) (18)

for MB(x, δ) = Pr(piv|zA;α(x, δ))qArA + Pr(piv|zB;α(x, δ)) on an appropriate

domain Dn. The domain Dn = {(xn, δn) : δn ∈ ∆n, xn ∈ Xn(δn)} is chosen so

that for all (xn, δn) ∈ Dn, 1 > δn > 2xn > 0. Thus, the implied vote shares

q(zA;α) = (1− δ)(
1

2
+ x) + δ,

q(zB;α) = (1− δ)(
1

2
− x) + δ

are ordered as

1

2
< q(zB;αn) < q(zA;αn). (19)

18This is because any compact domain D ⊆ R2 is homeomorph to [0, 1]2.
19Note than f is continuous by an application of Berge’s theorem of the maximum.
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We show that the boundary conditions (13) - (16) are satisfied by f and g

on Dn when n is large enough. Recalling the equilibrium conditions (5) and (6),

the sequence of pairs (x0
n, δ

0
n)n∈N, given by Lemma 2, yields a sequence of voting

equilibria with information acquisition. Given (19), and application of the law

of large numbers implies that policy A is elected with probability larger than 1
2

in both states as n → ∞. Thus, the equilibrium sequence has asymptotically

inefficient outcomes. The details are in Appendix 7.3. Below, we sketch the

logic why the boundary conditions are satisfied. This will be instructive of the

economic forces that hold together the inefficient equilibrium.

Sketch of the Logic. Observe that (12) shows that the precision xn of the

voters scales the distance between the vote shares in the two states. Given (10)

and the ordering (19), when conditioning on the pivotal event, the voter’s belief

about the likelihood of the state being zA is smaller when xn is larger and larger

when xn is smaller.

We chose Xn =
[
xmin
n , xmax

n (δn)
]
so that for xn = xmax

n (δn) the implied belief

about the likelihood of α is in
[
p, p

]
; compare to Lemma 1. Thus, the information

acquisition strategy (x(p), A,B) is preferred over (0, A,A); or, in other words,

f(xmax
n (δn), δn) > 0. Likewise, for xn = xmin

n , the implied belief is sufficiently high

so that (0, A,A) is preferred over any information acquisition strategy (x,A,B);

in other words, f(xmin
n , δn) < 0. In fact, we show that one can let xmin

n = 0.

We chose ∆n =
[
δmin
n , δmax

n

]
so that the following holds: For δn = δmax

n , the

vote shares are shifted towards A sufficiently much so that the pivotal likelihood

and therefore the marginal benefit MB(xn, δn) from acquiring information are

exponentially small. This way, g(xn, δn) = 0 implies xn ≈ 0 = xmin
n when n is

large enough. Given that f(xmin, δn) < 0, any x′
n with f(x′

n, δn) = 0 is larger

than xmin so that the convexity of the cost function C implies g(x′
n, δn) < 0. For

δn = δmin
n , there is much less bias towards A and the implied vote shares are

sufficiently close to 1
2
in at least one state. We choose δmin

n so that the marginal

benefit MB(xn, δn) from acquiring information is so large that g(x′
n, δn) = 0

implies x′
n > xmax

n . Since C is convex, g(xn, δn) < 0 for any xn ≤ xmax
n ; in

particular, for any xn ≤ xmax
n which additionally satisfies f(xn, δn) = 0.

Lemma 10 thus yields an equilibrium (x0, δ0) when n is large enough, and,

following the logic sketched above, the information investment x0 in this equi-

librium is so that the voter is indifferent between choosing (0, A,A) (i.e. voting

14



according to the prior belief) and choosing (x0, A,B). The likelihood of voting

consistent with the prior belief, δ0 is so that the incentives to acquire information

are just so that x0 is the optimal precision acquired by a voter under the best

response.

6 Conclusion

We have revisited the question of information acquisition in elections; and, in

particular, the classic model of Martinelli (2006).

The main insight of our analysis is that when political information is a public

good, complementarities arise that create an equilibrium coordination problem.

Equilibria differ in the extent and quality of informational efforts of the voters:

There is an equilibrium with relatively higher and another with lower efforts.

Importantly, we have shown that the equilibrium outcomes of the low effort

equilibrium are inefficient even when information cost are arbitrarily low and

there are arbitrarily many voters that acquire information. None of the previous

literature has suggested that such an equilibrium would exist.

Our result highlights that it might not be easily possible to address the prob-

lem of badly informed electorates simply through informational initiatives and

campaigns targeted at reductions of information cost. Indeed, meta-analyses

find no evidence that standard cost reduction initiatives—door-to-door canvass-

ing and digital information dissemination—have any effect (Dunning et al., 2019).

Going forward, the result may be understood as qualifying initiatives that also

aim at stimulating a culture of high levels of informational effort.

7 Appendix

7.1 Proof of Lemma 1

Given any α with q(z;α) ∈ (0, 1) for z ∈ {zA, zB}, the pivotal likelihood is non-

zero. We claim that, given α, the expected utility from choosing (x,A,B) has a

unique maximizer x > 0. To see this, take the derivative of the expected utility
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from (x,A,B), or equivalently of the left hand side of (5), to obtain

Pr(piv|zA;α)qArA + Pr(piv|zA;α)qBrB − C ′(x). (20)

Clearly, there is a unique x > 0 that satisfies the first-order condition, since

C ′(0) = 0 and C ′′(x) > 0 for x > 0. Fix Pr(piv|zA;α)+Pr(piv|zA;α) and denote

by x(p) the maximizer maximizer x(p) as a function of p = Pr(zA|piv;α) in

the following. Note that the only possible strategies in the support of the best

response to α are (0, A,A), (0, B,B), and (x(p), A,B).

The voter prefers (0, A,A) over (0, B,B) whenever Pr(piv|zA;α(x, δ))qArA >

Pr(piv|zB;α(x, δ))qBrB and vice versa. So, there is a unique belief p∗ ∈ (0, 1)

at which the voter is indifferent between (0, A,A) and (0, B,B). At this belief,

the voter is also indifferent between (0, A,A) and (0, A,B) given (5); hence, she

strictly prefers (x(p), A,B) over (0, A,A) and (0, B,B).

Now, the difference between the right hand and left hand side of (5) is increas-

ing in p = Pr(piv|zA;α), for Pr(zA|piv;α) < p∗ and y = B, as already observed

in the main text. Thus, there is a unique belief p < p∗ at which the voter is

indifferent between (0, B,B) and (x(p), A,B). For p < p, (0, B,B) is the unique

best response. Similarly, for Pr(zA|piv;α) > p∗ and y = A, the difference be-

tween the right hand and left hand side of (5) is decreasing in p = Pr(piv|zA;α).
Thus, there is a unique belief p > p∗ at which the voter is indifferent between

(0, B,B) and (x(p), A,B). For p > p, (0, A,A) is the unique best response. Fi-

nally, the above shows that for p ∈ (p, p), the strategy (x(p), A,B) is the unique

best response.

7.2 Formal Derivation of Under-Investment given qArA =

qBrB

Suppose that qArA = qBrB. It is well-known that under this condition there is a

unique equilibrium α∗ in which all voters use a strategy (x∗, A,B). The precision

x∗ solves (5), that is,20

Pr(piv|zA;α∗)qArA + Pr(piv|zB;α∗)qBrB = C ′(x), (21)

20See Theorem 1 in Martinelli (2006).
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Now, suppose, in contrast to the assumption of the model in Section 1 that

all voters internalize the information externalities and maximize social welfare.

First, by much the same argument as in Martinelli (2006), there is a unique

equilibrium α∗∗ n which all voters use a strategy (x∗∗, A,B). The precision x∗∗

solves

n
[
Pr(piv|zA;α∗∗)qArA + Pr(piv|zB;α∗∗)

]
qBrB = C ′(x∗∗), (22)

It follows from a result by McLennan (1998) that the welfare-maximizing sym-

metric strategy is a symmetric equilibrium of the game of the voters. Conse-

quently, the welfare-maximizing strategy is identical to α∗∗.

Suppose that voters do not under-invest into information relative to the

welfare-maxiziming strategy, that is, x∗ ≥ x∗∗. Then,

MB(α∗) ≤ MB(α∗∗). (23)

for MB(α) = Pr(piv|zA;α)qArA + Pr(piv|zB;α)qBrB. It follows that MB(α∗) <

nMB(α∗∗) and this implies x∗ < x∗∗ since C ′′(x) > 0 for x > 0.

7.3 Proof of Theorem 1

In the following, we consider candidate equilibrium strategies αn, given by pairs

(xn, δn) ∈ Dn for the domain

Dn = {(x, δ) : δ ∈
[
3Mn(ϵ)n

− 1
2 , ϵ

]
, x ∈

[
0,Mn(δ)n

− 1
2

]
} (24)

for some ϵ > 0 and an increasing function Mn : [0, ϵ] → R>0 that will be defined

in the course of the proof. Often, we only specify one of the variables of the

pair, e.g., only xn, to then establish a claim for all strategies corresponding to

pairs (x′
n, δn) ∈ Dn with xn = x′

n. Further, we use the notation x∗
n for the unique

precision x that maximizes the expected utility across all strategies (x,A,B).

That is, x∗
n solves (5).
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Note that for any strategy α given by a pair (x, δ)

q(zA;α) = (1− δ)(
1

2
+ x) + δ, (25)

q(zB;α) = (1− δ)(
1

2
− x) + δ (26)

Note that Dn is homeomorph to [0, 1]2 by a homeomorphism h that maps the

boundaries as follows:

{0} ×
[
3Mn(ϵ)n

− 1
2 , ϵ

]
→ {0} × [0, 1] ,

{Mn(δ)n
− 1

2} ×
[
3Mn(ϵ)n

− 1
2 , ϵ

]
→ {1} × [0, 1] ,[

0,Mn(δ)n
− 1

2

]
× {3Mn(ϵ)n

− 1
2} → [0, 1]× {0},[

0,Mn(δ)n
− 1

2

]
× {ϵ} → [0, 1]× {1}.

In the following, we establish the conditions of the generalized Poincare-Miranda

Theorem (Lemma 2) for the functions f ◦ h−1 and g ◦ h−1 with f, g as in (17),

one-by one.

To show (13), we let xn = Knn
− 1

2 for some sequence (Kn)n∈⋉ with Kn → 0 as

n → ∞ (note that this includes the case xn = 0). This implies limn→∞ δn(zA, αn)−
δn(zB, αn) = 0. So, given (11), the voters do not learn anything when condition-

ing on the pivotal event, as n → ∞,

lim
n→∞

Pr(zA|piv;αn) = Pr(α). (27)

A Stirling approximation of the pivotal likelihood, 21

Pr(piv|z;αn) ≈ 4n(nπ)−
1
2

[
q(z;αn)(1− q(z;αn))

]n
, (28)

shows that the pivotal likelihood goes to zero as n → ∞. Thus, x∗
n → 0. Since all

voters strictly prefer A given the prior belief, (27) implies that for n sufficiently

large, given x∗
n, after any signal s ∈ {a, b}, the voter strictly prefers A over B.

21 Stirling’s formula yields (2n)! ≈ (2π)
1
2 22n+

1
2n2n+ 1

2 e−2n and (n!)2 ≈ (2π)n2n+1e−2n.

Consequently,
(
2n
n

)
≈ (2π)−

1
2 22n+

1
2n− 1

2 = 4n(nπ)−
1
2 . Plugging this expression for the binomial

coefficient into (25) and (26) yields Pr (piv|ω;n) ≈ 4n(nπ)−
1
2 (q(1− q))n for q = q(z;αn).
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Thus, (x∗
n, A,A) yields strictly more utility than (x∗

n, A,B). Further, (0, A,A)

yields strictly more utility than (x∗
n, A,A) since the voter does not costly acquire

information. We conclude that all voters strictly prefer (0, A,A) to (x∗
n, A,B)

under the best response, when n is sufficiently large. In other words, f(0, δn) < 0.

To show (14), we let xn = n− 1
2M(δn) for a strictly increasing, bounded func-

tion Mn : [0, ϵ] → R>0 to be specified momentarily. Given the definition of the

domain Dn and since Mn is strictly increasing, for any (xn, δn) ∈ Dn, δn > 2xn.

This implies the ordering

1

2
< q(zB;αn) < q(zA;αn), (29)

given (25) and (26). Moreover,

q(zA;αn)− q(zB;αn) = 3Mn(δn)n
− 1

2 (1− δn). (30)

Consider p∗ ∈ [0, 1] so that

p∗rA = (1− p∗)rB. (31)

Combining (11) and (30), and using that Pr(zA)rA > Pr(zB)rB, for any δn ∈ [0, ϵ]

we can choose Mn(δn) > 0 so that

Pr(zA|piv;α) = p∗ (32)

when n is large enough. Note that, by construction, Mn is indeed an increasing

and bounded function. Now, fix δn. By construction, given xn = Mn(δn)n
− 1

2 , the

voter is indifferent between (0, A,A) and (0, B,B). Since (0, A,B) is a convex

combination of (0, B,B) and (0, A,B), the voter is indifferent between (0, A,B)

and (0, A,A). However, the voter strictly prefers (x∗
n, A,B) over (0, A,B) and

hence over (0, A,A). In other words, f(Mn(δn)n
− 1

2 , δn) > 0.

To show (15), we let δn = n− 1
23Mn(ϵ). For any xn ∈

[
0, n− 1

2Mn(δn)
]
, 2xn ≤

δn, so that

|q(z;αn)−
1

2
| ≤ n− 1

23Mn(ϵ). (33)
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We claim that (33) implies

lim
n→∞

Pr(piv|z;αn)

n− 1
2

∈ R, (34)

To see why, denote sn = s(z;αn) and qn = q(z;αn). The claim (34) follows

from (33) by two observations: First, recall that ((2n + 1)sn)
−1 is the standard

deviation of the vote share for A. So, it is given by sn = ( (2n+1)
qn(1−qn)

)−
1
2 and satisfies

lim
n→∞

n− 1
2

sn
∈ R (35)

Second, ((2n+ 1)sn)
−1 =

[
(2n+ 1)(qn(1− qn))

]− 1
2
= sn(qn(1− qn))

−1. Thus,

lim
n→∞

n− 1
2

((2n+ 1)sn)−1
∈ R (36)

Given (33), limn→∞ δn(z;αn) ∈ R, so that (10) and (36) together imply (34).

Consequently,

lim
n→∞

MB(x, δn)

n− 1
2

∈ R (37)

for MB(xn, δn) =
[
Pr(piv|zA;αn, n)qArA + Pr(piv|zB;αn, n)qBrB

]
and all xn ∈[

0,Mn(δn)n
− 1

2

]
.

Now, take any x′′
n ∈ [0,Mn(δn)n

− 1
2 ] for which f(x′′

n, δn) = 0. Denote x′
n the

unique precision for which

MB(x′′
n, δn)− C ′(x′

n) = 0. (38)

We claim that

x′
n

n− 1
2

→ ∞ (39)

as n → ∞. Taylor approximating C ′(x′
n) and using that C ′(0) = C ′′(0) = 0 gives

C ′(x′
n) = C ′′′(ζn)(x

′
n)

2 (40)
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for some ζn ∈ [0, x′
n]. Now, (34) implies

lim
n→∞

MB(x′′
n, δn)

n− 1
2

∈ R; (41)

in particular,

MB(x′′
n, δn) → 0 (42)

as n → ∞. Since C ′′ > 0 for x > 0 and since C ′(0) = 0, (38) implies that x′
n → 0

as n → ∞. Further, (40) implies

x′
n

C ′(x′
n)

=
1

C ′′′(ζn)x′
n

→ ∞. (43)

Finally, we see that (38), (41) imply (39). Therefore, for n large enough, x′
n > x′′

n,

given that x′′
n ≤ Mn(ϵ)n

− 1
2 by definition. Since C ′′ > 0, (38) implies

MB(x′′
n, δn)− C ′(x′′

n) > 0, (44)

that is, g(x′′
n, δn) > 0. This means that (15) holds.

To show (16), we let δn = ϵ. This implies that

q(z;αn) >
1

2
+

ϵ

4
(45)

when n is large, given (25) and (26). Recalling the Stirling approximation (28)

and that the function q(1 − q) has the unique maximizer q = 1
2
, the pivotal

likelihood is exponentially small in both states, given (45). Now, take any

x′′
n ∈ [0,Mn(δn)n

− 1
2 ] for which f(x′′

n, δ) = 0. The unique precision x′
n for which

MB(x′′
n, δn)−C ′(x′

n) = 0, is also exponentially small. We can write x′
n = Knn

− 1
2

for some sequence (Kn)n∈N with Kn → 0 as n → ∞. Recalling the argument

that we gave to establish (13), we see that x′′
n > x′

n for any x′′
n ∈ [0,Mn(δn)n

− 1
2 ]

with f(x′′
n, δn) = 0. Since C ′′ > 0,

MB(x′′
n, δn)− C ′(x′′

n) < 0, (46)

that is g(x′′
n, δn) < 0. In other words, (16) holds.
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7.4 Limit outcomes of the inefficient equilibrium sequences.

Here, we give a proof for the statement in the main text that the likelihood that

policy A gets elected converges to 1 as n → ∞ given the inefficient equilibrium

sequence (αn)n∈N, given by pairs (xn, δn)n∈N. Suppose that this is not the case.

Given the vote share ordering (29) and given (9), this implies that

lim
n→∞

δn(z;αn) ∈ R (47)

for z = zB. That is, δn(z;αn) = n− 1
2Kn for some sequence (Kn)n∈N with

limn→∞Kn ∈ R>0. The same line of argument that we used to establish (39),

shows that

lim
n→∞

xn

n− 1
2

= ∞. (48)

This yields a contradiction since xn ≤ Mn(ϵ)n
− 1

2 and Mn(ϵ) is bounded by defi-

nition.
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