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A policy has to be selected. Opinions and information about it are dis-
persed among many agents, and a principal learns from observing their collec-
tive action. A partial-commitment mechanism maps the observed collective
action to a menu of multiple policies, from which the principal must choose.
Which mechanisms maximize the players’ payoff guarantee across diverse in-
formation scenarios? It turns out certain vague mechanisms are optimal:
they exclude only one policy from the full policy space, and do so only some-
times. Such mechanisms guarantee near full-information payoffs when the
policy space is fine, and even outperform all full-commitment mechanisms in
some scenarios.

The standard literature on information aggregation in collective choice problems
largely considers mechanisms of unlimited commitment power. For example, models
of majority voting typically map the agents’ collective action to a single policy. In
most applications, however, commitment to a precise policy is infeasible.

This paper considers mechanisms of partial commitment, which map the agents’
collective action to a range of possible policies. The principal is committed to that
range but may choose any policy from within it.

In addition to the practical infeasibility of precise commitments, there is an-
other motivation for the idea of partial commitment: it directly addresses a central
problem of democracy, namely, the distribution of authority between the populace
and the officials of the state. Under a partial-commitment mechanism, the agents
collectively determine the range of policies that may be implemented, then dele-
gate the choice within that range to the principal. Historically, this question of
delegation has been crucial in the design of democratic systems; it is the core of
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the dichotomy between direct and indirect democracy. For instance, the Founding
Fathers of the United States debated how much autonomy should be granted to
representatives of the people. They distinguished between delegates, who were ex-
pected to act as direct extensions of their constituents, and trustees, who were free
to exercise their own judgment in making policy decisions (Burke, 1774; Madison,
Hamilton and Jay, 1788). Delegation of decision-making is also an important issue
in other applications, such as governance in large organizations.

We study a basic model of partial commitment in which a policy x must be
selected from a finite, ordered policy space {0, x2, . . . , xl−1, 1}. The key friction is
that policy-relevant information is dispersed: it is uncertain whether the marginal
benefit of the policy exceeds its marginal cost. Information about this binary state
of the world is dispersed among N agents (where N is large). They hold private
information about it in the form of conditionally independent, noisy binary signals,
and heterogeneous prior beliefs: some are partisan (certain of one state), while
others hold uncertain priors. The agents’ information satisfies typical regularity
conditions that have appeared in prior work on majority rules with unlimited com-
mitment power (Bhattacharya, 2013).

As we are interested in simple, robust institutions, we consider simple mecha-
nisms that have a small action space and respect the agents’ anonymity. We call
these mechanisms processes of partial commitment. Our main results characterize
those processes of partial commitment that perform well across a wide range of
information scenarios and all equilibria.

In any process, each agent observes his private information and chooses a binary
action, 0 or 1. The agents’ collective action, i.e., the average of their individual
actions, is observed by a principal and determines a subset of the policy space,
from which the principal selects the final policy. The principal’s ex-ante optimal
policy is the maximal one available to her.1

Our first result (Theorem 1) characterizes the processes of partial commitment
that maximize the principal’s ex-ante payoff guarantee (worst-case payoff) across
all regular distributions of the agents’ private information and all symmetric weak
perfect Bayesian equilibria.2 The theorem identifies a particular class of processes,
namely majority votes over exclusion of the maximal policy, as being optimal, and
it establishes that when the policy space is fine (i.e., when the parameter ε :=

1Our basic model assumes constant marginal cost and benefit. (This assumption is typical, for
example, in the literature on public good referenda; see, e.g., Ledyard and Palfrey (2002).) Thus,
given any prior, either the maximal or the minimal policy is optimal. In this paper we assume
without loss of generality that the principal’s prior is such that the maximal policy is optimal.

2We impose a simple tie-breaking refinement that implies trembling-hand perfection (Selten,
1988).
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1 − xl−1 = x2 is small), these processes achieve near full-information payoffs. The
processes take the following form: If the share of agents choosing 1 exceeds a certain
cutoff, the policy set remains unrestricted, i.e., the principal can choose any policy
from {0, x2, . . . , 1}. Otherwise, the maximal policy is excluded; the principal must
choose from {0, x2 . . . , xl−1}. The fundamental feature of these processes is their
vagueness: they exclude only one policy, and do so only sometimes.

For comparison, let us consider as a benchmark the case in which the princi-
pal has unlimited commitment power. Here, the Condorcet jury theorem (Bhat-
tacharya, 2013; Feddersen and Pesendorfer, 1998) implies that full-information pay-
offs are achieved by a majority vote between the two extreme policies, x = 0 and
x = 1—a process in which the principal never has more than one policy to choose
from, in sharp contrast to the vagueness of the optimal processes identified in The-
orem 1. The benchmark result suggests that under partial commitment, a simple
majority vote between the most extreme policy sets possible, {0, x2} and {xl−1, 1},
might be a natural candidate for an optimal process.

However, this candidate process is suboptimal.3 The reason is that it allows for
the agents to miscoordinate on inefficient equilibria. In fact, we give a broader result
(Theorem 2) that says that processes of partial commitment always allow for such
miscoordination: While some equilibria may yield full-information payoffs, other
inefficient ones always exist. Specifically, there are natural inefficient equilibria in
which nearly all agent types truthfully match their action to their signal.4 Figure 1
illustrates such equilibria for the process described above (the majority vote between
{0, x2} and {xl−1, 1}). In the equilibrium on the left, the principal is constrained
to choose a policy in {0, x2}, even in the state where the ideal policy is x = 1. In
the equilibrium on the right, a similar error occurs in the opposite state.

This large scope for miscoordination suggests that it may be optimal to delegate
the decision fully to the principal—i.e., to allow her to choose any policy, regardless
of the agents’ collective action. However, such a process renders the agents’ actions
cheap talk and leads to equilibria without any information transmission. Intuitively,
for information transmission to occur, the process must provide some incentives in
the form of commitments from the principal.

Our next result (Theorem 3) addresses the latter issue: It characterizes the
processes of partial commitment that ensure information aggregation; that is, they
induce sufficient information transmission for the principal to learn the state from

3As we show, even a coin flip between x = 0 and x = 1 has a higher payoff guarantee than the
candidate process, for most priors.

4For any process of partial commitment, there is always a range of information structures with
such “approximately truthful equilibria.”
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Figure 1: Approximately truthful equilibria. A random agent chooses 1 with ap-
proximately the likelihood of signal 1, Pr(si = 1|ω), in each state ω ∈ {0, 1}. In the
left panel, the majority cutoff is not reached in either state; in the right panel, it is
reached in both.

the agents’ collective action (almost surely, as N → ∞). A critical property of
these processes is an imbalance condition that requires an unequal split of authority
between the principal and the agents, in an appropriate sense. Theorem 3 will imply
that vague commitments, which grant only minimal decision authority to the agents,
provide sufficient incentives for information aggregation.

Jointly, Theorems 2 and 3 will imply that the processes of Theorem 1—majority
votes over exclusion of the maximal policy—minimize possible choice errors across
all information scenarios. The principal learns the state, and she fails to achieve
the full-information payoff only when she is constrained by the agents to choose
x = xl−1 instead of x = 1 in the state where x = 1 is optimal (cf. Figure 1).

Our final main result (Theorem 4) points out that processes of partial commit-
ment may even provide higher payoff guarantees than full commitment, if we relax
one of the regularity conditions needed to apply the Condorcet jury theorem. The
condition we drop is that the expected share of partisans of each type must be
less than 1

2
. When a majority of the agents are partisans of the same type, under

a full-commitment mechanism they will enforce their preferred policy, leading to
outcomes that are not full-information equivalent. In contrast, under partial com-
mitment, a majority vote over exclusion of the maximal policy will always ensure
information aggregation and near full-information outcomes, regardless of the share
of partisans.

The results in Section 1 (Theorems 1–4) highlight the interaction of two funda-
mental problems a principal may face with a large group of agents: coordination
and information aggregation. When there are many agents, their inability to coor-
dinate becomes the central issue. “Vague” commitments on the part of the principal
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simultaneously defuse the coordination problem and provide sufficient incentives for
information aggregation. Consequently, the optimal processes are extreme and give
almost full decision authority to the principal.

In Section 2 we consider some extensions addressing the limitations of our base-
line model. The first limitation is that the baseline model is purely one of infor-
mation aggregation: All of the players have common ex-post preferences, and the
question is simply which processes effectively aggregate their private opinions and
information. In Section 2.1, we expand the model to include a preference aggre-
gation problem, allowing groups of agents to have opposing preferences depending
on the state. Such preferences have been used to study distributive politics, in
which the state of the world determines which group will benefit from a policy.5

We find that the same processes remain principal-optimal, provided a monotonic-
ity condition adapted from the “strong preference monotonicity” of Bhattacharya
(2013). We also provide sufficient conditions for the principal-optimal processes to
maximize the agents’ ex-ante payoff guarantee. In Section 2.2, we relax the assump-
tion of constant marginal cost and benefit and consider settings where the players’
ex-ante preferences are single-basin over the policy space. This captures settings
in which intermediate choices or compromises between two extremes are inefficient,
such as decisions about the provision of public goods involving economies of scale.

Section 3 contains further results concerning our baseline model. We give a pre-
cise condition for our results to hold for arbitrary finite policy sets (rather than only
those of the form specified in Section 1.1). We state a result about the existence
of efficient equilibria, and we identify certain inefficient equilibria that arise from
differences between the principal’s and the agents’ priors. Finally, we provide con-
ditions under which all robust optimal processes are vague, i.e., they never exclude
more than one policy.

In Section 4 we discuss the relationship of this paper to the broader literature on
delegation and on information aggregation in politics. Here, we summarize the key
contributions of our framework of partial-commitment mechanisms. These mecha-
nisms are significant for a host of reasons and have not previously been considered
in the study of collective choice problems.

In the information aggregation literature, there has been a large and influential
body of work studying elections under the assumption of full commitment power,
with a focus on supermajority voting between two alternatives; see, e.g., Austen-
Smith and Banks (1996), Feddersen and Pesendorfer (1997), and Krishna and Mor-
gan (2012). Also, a recent stream of the literature has considered (cheap-talk)

5See Fernandez and Rodrik (1991), Ali, Mihm and Siga (2025), and Bhattacharya (2018).
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models without any commitment power in order to model information aggregation
in protests, polls, and informal politics more generally; see, e.g., Battaglini (2017).

Partial commitment adds a complementary positive theory of both standard
collective choice mechanisms and informal politics. First, it addresses frictions
in commitment, possibly minimal ones. Second, it captures those mechanisms of
which partial commitment is a deliberate feature. For example, public referenda are
often designed to have some binding implications while leaving details open (e.g.,
a constitutional referendum may decide whether to update a nation’s constitution,
but delegate the detailed specification of a new one to a constitutional convention).
Similarly, firms use worker feedback polls to inform workplace policies, but delegate
the design and implementation of the policies to other entities. Third, the optimality
of vague commitments suggests a strategic role for vagueness, rooted in coordination
issues. This observation suggests an explanation for the perception that political
decision-makers communicate vaguely, have malleable agendas, and often break
promises (cf. Shepsle (1972) and Page (1976)).

Our model of partial commitment also provides a benchmark for studying del-
egation when there is a large set of privately informed agents. The literature has
largely focused on the opposite case of a single agent; see, e.g., Holmström (1978),
Alonso and Matouschek (2008), and Dessein (2002). In that setting, full delegation
to the agent is trivially optimal if the agent knows the state and preferences are
common. The results in this paper provide a contrasting benchmark showing that
if knowledge about the state is dispersed among many agents, ceteris paribus, min-
imal delegation to them is optimal. Our benchmark applies, as discussed above, to
the question of how to distribute authority between elected officials and the popu-
lace in a democracy, as well as to similar delegation questions in large organizations
with many departments. A particularly topical application may be to the use of an
artificial intelligence (AI) system (corresponding to the principal in our model) to
process and interpret inputs from workers at a firm.

More broadly, the concept of vague (or minimal) commitments provides a new
perspective on ways for leaders to involve others (e.g., citizens or employees) in
decision-making. Minimal commitments might be a useful feature for methods
such as town halls, polls, open-door policies, or public referenda.
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1 Processes of Partial Commitment

1.1 Model

A policy x needs to be chosen from a finite set of options P = {x1, . . . , xl} with
x1 < x2 < . . . < xl. To simplify the algebra, we let x1 = 0, xl = 1, and x2 =

1 − xl−1 = ε > 0. The policy has a common and constant marginal cost of c = 1
2
,

and a common and constant marginal benefit given by an uncertain state ω ∈ {0, 1},
i.e., the players’ payoff from x in ω is x(ω − 1

2
).

There is a set of agents {1, . . . , N} who hold private information about the
state. Each agent i receives a binary private signal si ∈ {0, 1} satisfying 0 <

Pr(si = 1 | ω = 0) < Pr(si = 1 | ω = 1) < 1; so, signal 1 is an indication for state 1

and signal 0 an indication for state 0. The signals si are independent conditional on
the state and are all drawn from the same distribution H. Each agent i also holds
a private prior belief pi ∈ [0, 1] about the likelihood of ω = 1; pi is called agent
i’s type. Types are drawn independently from a distribution F on [0, 1] satisfying
certain regularity conditions from the literature (Bhattacharya, 2013): It exhibits
“rich heterogeneity,” meaning it has full support and atoms at 0 and 1, each with
mass less than 1

2
. (The atoms correspond to partisan types that prefer either policy

x = 0 or policy x = 1.) Furthermore, it is differentiable on (0, 1).
In addition to the agents, there is a principal who has a commonly known prior

1
2
< Pr(ω = 1) ≤ 1− ε.6

The timing is as follows. First, a process of partial commitment P (defined
below) is announced. Next, each agent i observes his private information and takes
a binary action ai ∈ {0, 1}. The principal observes the quantity m =

∑N
i=1 ai
N

, which
we call the collective action, and chooses a policy x ∈ P subject to a constraint
P (m) determined by the process P .

We define a process as a left-continuous mapping from [0, 1] to the set of all
subsets of P , with at most finitely many discontinuities, and none at 0. A process
P thus maps a collective action m to a policy set P (m).7 Every process P takes
the form of a step function; that is, there exist a finite number of cutoffs 0 < m1 <

. . . < mR < mR+1 = 1 such that P (m) is constant on [0,m1] and on (mj,mj+1]

for j = 1, . . . , R. A process of partial commitment is a process P such that P (m)

contains at least two policies for every m.

6 The right constraint ensures that the payoffs from an equilibrium without any information
transmission cannot be arbitrarily close to the full-information payoffs.

7The assumption that P has at most finitely many discontinuities is without loss of generality
for monotone processes, i.e., those where minP (m) and maxP (m) are weakly increasing, since
the policy space P is finite.
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Given a process P , a principal’s strategy is a mapping taking each m ∈ [0, 1]

to a (possibly random) policy x̃ ∈ ∆
(
P (m)

)
. A symmetric agents’ strategy is a

mapping σ : [0, 1] × {0, 1} → [0, 1], where σ(p, s) represents the likelihood that an
agent with prior p and signal s chooses action 1. The analysis that follows focuses
on weak perfect Bayesian equilibria in symmetric agents’ strategies.

We impose the following tie-breaking rule. Unless otherwise indicated, we con-
sider only equilibria in which, when a partisan of type 1 is indifferent, she chooses
a random action distinct from that of a type-0 partisan, i.e., σ(0, 1) = σ(0, 0) ̸=
σ(1, 1) = σ(1, 0) ∈ {0, 1}; the reverse holds for type-0 partisans. The key implica-
tion of this refinement is that for each action, there is a mass of agent types who
will choose it with positive probability regardless of their signal. Essentially all
our results hold for any “noise” refinement implying the same property; for exam-
ple, they hold if we instead introduce non-strategic agent types that always choose
prescribed actions, as has been done in the literature (see, e.g., Damiano, Li and
Suen, 2025). The property implies that the mean action for each state is interior,
i.e., q(ω′;σ) := E

(
σ(p, s) | ω = ω′

)
∈ (0, 1) for ω′ ∈ {0, 1}, and we note that this

implies trembling-hand perfection (Selten, 1988); see the online appendix.

1.2 Best Responses

Upon observing that k of the N agents have chosen action 1, the principal makes a
Bayesian inference and best-responds. Her posterior is (assuming q(0;σ) ∈ (0, 1))8

Pr(ω = 1 | k;σ,N)

Pr(ω = 0 | k;σ,N)
=

Pr(ω = 1)

Pr(ω = 0)

(
N
k

)(
N
k

)(q(1;σ)
q(0;σ)

)k(1− q(1;σ)

1− q(0;σ)

)N−k

.

The players’ common utility from policy x in state ω is x(1 − c) = x
2

if ω = 1 and
−xc = −x

2
if ω = 0. Hence the principal’s best response is x = 1 if 1

2
< Pr(ω =

1 | k;σ,N) and x = 0 if 1
2
> Pr(ω = 1 | k;σ,N). The principal is indifferent if

1
2
= Pr(ω = 1 | k;σ,N), which can only happen for at most one realized collective

action. This allows us to characterize the best reponse in terms of a cutoff k̄ + 1

as follows: If q(1;σ) ≥ q(0;σ), the posterior Pr(ω = 1 | k;σ,N) is increasing in k.
Then, given Pr(ω = 1) < 1

2
, either 1

2
< Pr(ω = 1 | k;σ,N) for all 0 ≤ k ≤ N—in

which case we set k̄ = N—or there is a minimal k̄ with −1 ≤ k̄ < N such that9

Pr(ω = 1 | k̄;σ,N) <
1

2
≤ Pr(ω = 1 | k̄ + 1;σ,N). (1)

8We typically indicate posteriors of an agent i with the subscript i, e.g., Pri(ω = 1|pi = p, si =
s), but do not use a subscript for the principal’s beliefs.

9We abuse notation here and set Pr(ω = 1 | k = −1;σ,N) = 0.
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Analogously, if q(1;σ) < q(0;σ), the posterior Pr(ω = 1 | k;σ,N) is decreasing in
k. Then either 1

2
< Pr(ω = 1 | k;σ,N) for all 0 ≤ k ≤ N—in which case we set

k̄ = N—or there is a maximal k̄ with 0 ≤ k̄ < N such that Pr(ω = 1 | k̄;σ,N) >
1
2
≥ Pr(ω = 1 | k̄ + 1;σ,N).
The principal can only be indifferent at k = k̄+1. Any mixed best response of the

principal is thus fully described by the cutoff k̄ and a distribution x̃ ∈ ∆
(
P (k̄+1)

)
with realizations denoted by x̄ ∈ supp(x̃).

We turn to the agents’ best response. Fix a process P with cutoffs (m1, . . . ,mR+1),
a strategy profile, and an agent i. Let k−i denote the realized number of other agents
choosing action 1. Then agent i’s choice affects the policy outcome x only if a pivotal
event occurs.

Specifically, let piv0,k denote the event that k−i = k, and let piv0 = ∪k∈{k̄,k̄+1}piv0,k.
For j > 0, let pivj denote the event that pivj′ does not hold for j′ = 0, . . . , j−1 and
k−i = ⌊mj ·N⌋.10 The events piv0,k̄ and piv0,k̄+1 are the only ones in which agent i’s
choice possibly affects the principal’s preference (for 0 versus 1), and pivj for j > 0

means agent i’s choice changes the policy set available to the principal. In any other
event, agent i’s choice does not affect the policy outcome. Let piv = ∪j=0,...,R pivj

(and note that, by definition the pivotal events pivj are mutually exclusive).
Now, if agent i has signal si = s and type pi = p, then he prefers action 1 if

Pri(ω = 1 | pi = p, si = s) U(1; η)− Pri(ω = 0 | pi = p, si = s) U(0; η) > 0,

(2)

where U(ω′; η) is the average effect on the policy outcome x of an additional agent’s
choosing action 1 in state ω′,

U(ω′; η) :=
∑

j=0,...,R;x̄∈supp(x̃)

Pr(x̃ = x̄) Pr(pivj | ω = ω′; η,N)

·
(
E(x | pivj, ai = 1; x̃ = x̄; η,N)− E(x | pivj, ai = 0; x̃ = x̄; η,N)

)
,

(3)

given a strategy profile η = (σ, k̄, x̃).

1.3 Robust Optimal Processes of Partial Commitment

In this section we present our first main result, a characterization of processes of
partial commitment that maximize the principal’s payoff guarantee. We call such
processes robust optimal. The principal’s payoff guarantee is the proportion of

10Here, for any z > 0, ⌊z⌋ denotes the largest non-negative integer that lies weakly below z.
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the full-information payoff that the principal obtains in the worst-case scenario, as
N → ∞. Formally, for a process P , the principal’s payoff guarantee is defined as

G(P ) := inf
(ηN )N∈N,π

(
lim inf
N→∞

E(x | ω = 1; ηN , N)− Pr(ω = 0)

Pr(ω = 1)
E(x | ω = 0; ηN , N)

)
,

where we take the infimum over all equilibrium sequences (ηN)N∈N and all pairs of
distributions π = (F,H), which we refer to as agents’ information structures.11 12

Since the principal and the agents share the same ex-post preferences, it turns out
that maximizing the principal’s ex-ante payoff guarantee is the same as maximizing
the agents’, provided the agents’ mean prior satisfies the same extremeness bound
as the principal’s, EF (pi) ≤ 1− ε. We show this formally in Section 1.7.

Note that without the noise refinement imposed earlier, the worst-case analysis
would be moot: for many processes, the worst case would be achieved by a trivial
equilibrium, in which all agent types choose the same action.

Theorem 1 identifies a simple class of processes as being robust optimal: majority
votes over exclusion of the maximal policy. These are processes P of the form

P (m) =

P \ {1} if m ≤ m1,

P if m > m1.
(4)

for some m1 ∈ (0, 1). They achieve near full-information payoffs.

Theorem 1. Any majority vote over exclusion of the maximal policy is robust
optimal and has a payoff guarantee of 1− ε.

Majority votes over exclusion of the maximal policy pass the Wilson doctrine
(Wilson, 1985): Their construction is detail-free, meaning it does not utilize knowl-
edge about the agents’ information. Moreover, their performance requires only that
the principal know the mean actions q(ω;σ) (these are a sufficient statistic for her
best response; see (1)); she needs no further knowledge about the agents’ strategy
or information.

The central observations driving Theorem 1 are laid out in Sections 1.4–1.6.
These sections provide results about inefficient equilibria, information aggregation,

11Here, lim inf denotes the smallest accumulation point of a sequence. For any equi-
librium sequence (ηN )N∈N, the smallest accumulation point of the principal’s payoff is
lim infN→∞

1
2

(
Pr(ω = 1)E(x | ω = 1; ηN , N) − Pr(ω = 0)E(x | ω = 0; ηN , N)

)
. When the

principal knows the state, she can achieve the full-information payoff 1
2 Pr(ω = 1). Dividing the

former quantity by the latter and taking the infimum over all π and (ηN )N∈N yields G(P ).
12If no equilibrium sequence exists for some π, we set G(P ) = −∞. In Section 1.6 we will

establish a general existence result that rules out G(P ) = −∞ for all monotone processes, defined
as those where maxP (m) and minP (m) are weakly increasing in m.
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and equilibrium existence. The formal proof of Theorem 1 is in Section 1.7. Here
we discuss the idea of the proof, as well as some alternative candidates for robust
optimal processes.

The key property of the optimal processes of Theorem 1 is “vagueness”: They
allow the agents to exclude at most one policy through their collective action. The
benchmark case in which the principal has unlimited commitment power provides a
sharp contrast. There, the Condorcet jury theorem (Bhattacharya, 2013; Feddersen
and Pesendorfer, 1997) implies that full-information payoffs are achieved by a simple
majority vote between the two extreme policies, x = 0 and x = 1—a process
that is the opposite of vague, as all policies but one are excluded. In view of this
benchmark, it would be natural to suppose that under partial commitment, another
candidate for an optimal process would be an approximation of the latter process:
a simple majority vote between the most extreme policy sets possible under partial
commitment, namely {0, ε} and {1− ε, 1}.

However, as mentioned in the introduction, it turns out that these approxima-
tions are suboptimal, owing to a coordination problem of the agents: As we show
in Section 1.4, for any process P of partial commitment and any associated policy
set P (m), there are inefficient equilibria in which the principal is constrained to
choosing from P (m) with probability approaching 1, as N → ∞ (Theorem 2). In
the case of the mentioned approximations, this means there are equilibria in which
the highest policy the principal can choose is x = ε, even in state 1 (where x = 1

would be optimal), implying a payoff guarantee of at most ε. This is even lower
than the payoff guarantee of a random choice between x = 0 and x = 1, for most
values of the principal’s prior.13

The observation that any policy set arising from the process can become a cer-
tain constraint on the principal’s choice suggests another candidate for optimality:
a process P that never excludes any policies (P (m) = P for all m). Under such a
process, the agents’ actions are cheap talk. However, it is easy to see that cheap talk
is not optimal. For information transmission to occur in all equilibria (that survive
the tie-breaking refinement), the principal’s ex-ante optimal policy x = 1 must be
excluded after some collective action. Otherwise, there is an “uninformative” equi-
librium without any information transmission: All non-partisans choose the same
action, and each partisan matches his action to his type, independent of his signal.
The principal learns nothing about the state from observing the collective action;
she chooses her ex-ante optimal policy x = 1 independent of her observation. This

13The payoff guarantee from the random choice is 1
2 − Pr(ω=0)

Pr(ω=1) ·
1
2 , which exceeds ε if Pr(ω =

1) > 1
2(1−ε) .
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makes all agent types indifferent between both actions, rationalizing their uninfor-
mative behavior.14

Conversely, for the processes defined by (4) (majority votes over exclusion of the
maximal policy), Theorem 3 in Section 1.5 shows that in any equilibrium sequence
(σN)N∈N, information aggregates : the principal learns the state almost surely as
N → ∞, i.e., limN→∞ Pr(ω = 1 | σN , N) = 1ω=1.

Taken together, our results establish that any process P has a lower payoff
guarantee than the processes defined by (4). This is because, for such a process,
either x = 1 is never excluded from the available policies but then information
transmission fails in some equilibrium completely, or P (m) ⊆ P\{1} for some m ∈
(0, 1) but then there is an equilibrium where the principal’s policy choice is weakly
more constrained than in any equilibrium of the processes (4), by Theorem 2. In
fact, if P (m) ⊊ P\{1}, the process has a strictly lower payoff guarantee.

1.4 Miscoordination on Approximately Truthful Behavior

The Condorcet jury theorem (as in Bhattacharya (2013)) implies that when the
principal has unlimited commitment power, simple majority voting between x = 0

and x = 1 implies efficient outcomes in all equilibrium sequences as N → ∞.
Theorem 2, by contrast, shows that partial commitment implies the existence of
inefficient equilibrium sequences. Specifically, given any process of partial commit-
ment P and any of its cutoffs mj, we construct an equilibrium sequence in which
the chosen policy set is P (mj) with probability converging to 1 as N → ∞. Thus,
whenever P (mj) excludes an ex-post optimal policy, i.e., either x = 0 or x = 1, the
principal is constrained to choose a suboptimal policy in at least one of the states.15

Theorem 2. Consider any process of partial commitment with cutoffs 0 < m1 <

. . . < mR < mR+1 = 1. For any j = 1, . . . , R+1, there exist an agents’ information
structure and a sequence of equilibrium strategies (σN)N∈N for which

lim
N→∞

Pr
(
m ∈ P−1(P (mj)) | σN , N

)
= 1.

As we will show in Section 3, many processes have efficient equilibrium sequences
for all agents’ information structures. So Theorem 2 shows that partial commit-

14The literature provides various results in the same spirit for discrete-type settings, showing
that binary cheap talk with many senders implies the existence of equilibria with little or no
information transmission; see, e.g., Battaglini (2017) and Chen (2025).

15On the other hand, if P never excludes both x = 1 and x = 0, then there is always an
(inefficient) equilibrium without any information transmission, as argued in the preceding Section
1.3.
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ment creates a coordination problem: The agents may miscoordinate to achieve an
inefficient equilibrium instead of an efficient one.

The formal proof of Theorem 2 is in the appendix. Here, we provide a sketch.
The idea of the proof is to construct a sequence of equilibria in “approximately
truthful” strategies. Formally, for δ > 0, an agents’ strategy σ is (δ-)approximately
truthful if, for any given realized signal, a share of at least 1− δ types match their
actions to the signal. Equilibria in approximately truthful strategies (which we call
approximately truthful equilibria) exist for all small δ and some agents’ information
structure with the following two properties. First, the agents’ signals are sufficiently
uninformative:

Pr(si = 1|ω = 1)− Pr(si = 1|ω = 0) ≤ δ. (5)

Second, the agents’ priors are relatively close to the principal’s prior:

Pr
F

(
pi ∈ [

¯
p(1),Pr(ω = 1)]

)
> 1− δ

2
, (6)

for a certain bound
¯
p(1).

The relevance of the two properties is best illustrated by connecting them to
the scenario where the agents’ actions are cheap talk and the prior is common.
This is a pure common-value game, and, as such, it has an equilibrium in which
all agents truthfully match their actions to their signals. Below we show that,
for some fixed information structures with the properties (5) and (6), the agents’
incentives given any approximately truthful strategy sufficiently approximate those
in the common-value game. This will imply the existence of an equilibrium in
approximately truthful strategies.

Figure 2 shows an example process and an agents’ information structure satisfy-
ing (5) and (6). The left panel shows the distribution of priors, nearly all of whose
mass lies between the principal’s prior and a bound

¯
p(1) < Pr(ω = 1) close to it.

The right panel shows the signal probabilities Pr(si = 1|ω). They lie in between
m3 and m4, so that, for any approximately truthful strategy, the realized policy set
is almost surely P (m3) as N → ∞, by an application of the law of large numbers.

A key statistic in our analysis is a measure of the distance between the mean
action in each state, q(ω′;σN) = E

(
σN(s)|ω = ω′

)
, on the one hand, and each

cutoff of the process or the principal’s cutoff k̄, on the other. This distance is given
by

KL
(
mj, q(ω

′;σN)
)

13



Figure 2: The agents’ information structure, given by the prior distribution F (left)
and the signal probabilities Pr(si = 1|ω = ω′) (right). The approximately truthful
equilibrium is given by the types pN(0) and pN(1) that are indifferent after signals
0 and 1, respectively: An agent i with signal s ∈ {0, 1} chooses ai = 1 if and only
if pi ≥ pN(s).

for j = 0, . . . , R, ω′ ∈ {0, 1}, with m0 = limN→∞
k̄
N

denoting the principal’s limit
cutoff.16 Here, KL(γ, q) := γ log

(
γ
q

)
+ (1 − γ) log

(
1−γ
1−q

)
is the Kullback–Leibler

divergence. Intuitively, a cutoff mj is more relevant in shaping the agents’ incentives
when it is closer to the mean action, because in that case the pivotal event in which
the realized collective action equals the cutoff is more likely. In the appendix, we
employ large deviation theory to show that, in either state, the likelihood of this
pivotal event is exponential in KL

(
mj, q(ω

′;σN)
)

and in the number N of agents:

Pr(pivj|ω = ω′;σN , N) = exp
(
− (N − 1)KL

(
mj, q(ω

′;σN)
)
+ o (N)

)
. (7)

This large deviation result allows us to precisely understand the agents’ incen-
tives. First, it implies that the principal’s limit cutoff lies in between the mean
actions, i.e.,

lim
n→∞

q(0;σN) < m0 < lim
n→∞

q(1;σN).

If this were not the case, then we would have KL
(
m0, q(0;σN)

)
̸= KL

(
m0, q(1;σN)

)
as N → ∞,17 so that (7) would imply that the principal’s inference from observing
a collective action of k̄

N
is unbounded. However, this cannot be, given the definition

of k̄; see (1). Second, for any process and cutoff mj, if the signal precision parameter
δ > 0 is sufficiently low, there are signal probabilities in between mj and mj+1 that

16It is sufficient to show information aggregation for any subsequence where k̄
N converges given

that the values of k̄
N are in the compact set [0, 1]. We identify the subsequence with the original

sequence to omit the subsequence notation.
17Note here that σN being δ- approximately truthful implies limn→∞ q(0;σN ) <

limn→∞ q(1;σN ) for δ sufficiently small.
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are much closer to each other, and thus to the principal’s cutoff m0, than to any
cutoff of the process; cf. Figure 2. We can choose δ small enough and the signal
probabilities so that there is γ > 0 and

γ +KL
(
m0, q(ω

′;σN)
)
< KL

(
mj, q(ω

′;σN)
)

for all j > 0 and ω′ ∈ {0, 1},

(8)

given any approximately truthful strategy σN . By (7), the agents are then almost
certain to influence the principal’s preference for low versus high policies (and not
the policy range he chooses from), conditional on being pivotal:

lim
N→∞

Pri(piv0|piv;σN , N) = 1. (9)

In other words, the agents’ incentives are almost the same as if their actions were
cheap talk. Now, as previously mentioned, if all of the players share a common
prior, then the cheap-talk game has an equilibrium in which all types are truthful.
The property (6) ensures that the agents’ prior distribution is sufficiently close to
a common prior to guarantee that an approximately truthful equilibrium exists in
the cheap-talk game. By (9), this equilibrium will extend to our main game. In the
appendix we construct the equilibrium formally using a fixed point argument.

The left panel of Figure 2 shows the equilibrium strategy in terms of its cutoff
types, namely, the agent types pN(1) and pN(0) that are indifferent after a high
and a low signal. Note that pN(1) lies below the δ-quantile and pN(0) above the
(1− δ)-quantile. Thus, the equilibrium is δ-approximately truthful.

1.5 Information Aggregation

In this section we derive a critical condition for information aggregation that is
satisfied by the candidate processes (4). This condition is that decision-making
power must not be divided in a “balanced” way between the principal and the agent
body. Formally, a process P with a single cutoff m1 ∈ (0, 1) has no balance if

maxP (0) ̸= minP (1),

and it has balance otherwise. For example, a process given by

P (m) =

{0, . . . , 1
2
} for m ≤ 1

2
,

{1
2
, . . . , 1} for m > 1

2
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has balance, with 1
2
= maxP (0) = minP (1). It turns out that balance implies the

existence of informative equilibria in which the principal’s choice does not depend
on the observed collective action, although she learns about the state from it.

The logic of these equilibria is simple; we illustrate it for the example process
above. The agents follow a strategy σN under which the mean action is higher in
state 0 than in state 1 (0 < q(1;σN) < q(0;σN) < 1), below 1

2
(q(0;σN) <

1
2
), and

such that the principal is indifferent when the majority threshold is just met. That
is, if the principal observes k̄ + 1 = ⌊N

2
⌋+ 1 actions 1, her posterior is

Pr(ω = 1|k = ⌊N
2
⌋+ 1;σN , N) =

1

2
.

(One can show that strategies with such mean actions q(ω′;σN) exist whenever the
number of agents is large enough.18) If she observes fewer than k̄+1 actions 1, then
she prefers high policies but can choose at most x = 1

2
. If she observes k̄ + 1 or

more 1-actions, then she prefers low policies but has to choose at least x = 1
2
. Thus

it is optimal for her to always choose x = 1
2
. This constant best response makes

each agent indifferent between all strategies; in particular, the strategy σN that we
started with is a best response for the agents.

In sequences of equilibria of this kind, information does not aggregate, as the
mean actions are smaller than 1

2
, i.e. q(0;σN) < 1

2
for all N . This way, in state

0, the realized number k of 1-actions is smaller than k̄ + 1 = ⌊N
2
⌋ + 1 with a

non-vanishing probability and the principal’s posterior greater than 1
2

since it is
monotone decreasing in k. So the principal does not learn the state.

In these equilibria, the principal’s choice exactly nullifies any effect of the agents’
collective action, as in a deadlock between two opposed parties. This deadlock arises
from the “balanced” split of decision-making power. Perversely, the deadlock occurs
even when all players have a common preference and prior.

To conclude, no balance is necessary for information aggregation. The following
theorem shows it is also a sufficient condition together with some other proper-
ties. The theorem gives a complete characterization of information aggregation for

18Take any m1 ∈ (0, 1). Let m′ = ⌊m1N⌋+1
N , and note that Pr(k=m′N |ω=1)

Pr(k=m′N |ω=0) = exp
(
−

N
(
KL(m′, q(1)) − KL(m′, q(0))

))
; cf. (7). Consider any pair of mean actions q =

(
q(0), q(1)

)
with 0 < q(1) ≤ q(0) < m1. If q(1) = q(0), the principal learns nothing from her observations
and Pr(ω = 1|k = m′;q, N) = Pr(ω = 1) > 1

2 . If q(1) < q(0), then limN→∞ KL
(
m′, q(1)

)
−

KL
(
m′, q(0)

)
> 0, so limN→∞ Pr(ω = 1|k = m′;q, N) = 0. By an application of the intermediate

value theorem, for any N large enough, there are mean actions 0 < q(1) < q(0) < m1 for which
Pr(ω = 1|k = m′;q, N) = 1

2 . For any such q(0) and q(1), we can always find a strategy σ that
induces these mean actions and where additionally the type-1 partisans choose the 1-action with
a different probability than the type-0 partisans.

16



monotone processes with a single cutoff. A process is monotone if both minP (m)

and maxP (m) are weakly increasing.

Theorem 3. Consider any monotone process of partial commitment P with a single
cutoff 0 < m1 < 1 and any agents’ information structure. Information aggregates in
all equilibrium sequences if and only if the process has no balance and the maximum
of its policy sets is non-constant, i.e., maxP (0) < maxP (1).

The formal proof of Theorem 3 is in the appendix. Regarding the necessity of
the two conditions, we have just explained how a violation of non-balance implies a
failure of information aggregation, and in Section 1.3 we explained how a violation
of the second property likewise implies a failure.We now sketch why, conversely, not
violating the two conditions ensures information aggregation.

First, the condition maxP (0) < maxP (1) rules out the possibility of “uninfor-
mative” equilibria, which we define as those having the same mean action in both
states, q(0;σ) = q(1;σ). To see this, recall from Section 1.1 that the tie-breaking
rule implies q(0;σ), q(1;σ) ∈ (0, 1). Hence all collective actions m ∈ {0, 1

N
, . . . , 1}

are on path. In an uninformative equilibrium, the principal learns nothing from
observing the realized collective action; therefore, at any m > m1, she chooses
x = maxP (1) since this is closest to her ex-ante optimal policy x = 1. At any
m ≤ m1, she chooses x(m) = maxP (0) < minP (1). Thus the agents are pivotal in
only one event, namely piv1, which corresponds to m1. The uninformativeness of
the equilibrium implies that piv1 has the same probability in both states, so that
any agent with a uniform prior is indifferent before observing his signal. His best
response (and that of nearby types) is then to match his action to his signal. But
this means the equilibrium is informative after all. We conclude that there are no
uninformative equilibria.

Second, non-balance causes the logic of the “deadlock equilibrium” to fail. The
deadlock equilibrium is supported by the indifference of all agent types; each type
is indifferent because his action does not affect the policy outcome. Non-balance
eliminates this indifference: It implies that an agent’s average effect on the policy
outcome, given by (3), is non-zero and has the same sign in both states, i.e., in any
equilibrium ηN ,

either U(ω′; ηN) > 0 for all ω′ ∈ {0, 1},

or U(ω′; ηN) < 0 for all ω′ ∈ {0, 1}.

We prove this assertion in two steps. First we argue that the average effect is
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non-zero in at least one state, i.e.,

U(0; ηN) ̸= 0 or U(1; ηN) ̸= 0. (10)

The idea of the argument is that, although in principle the average effect in either
state may be zero (e.g., when the effects in various pivotal events may cancel out
exactly), the informativeness of the agents’ strategy prevents this from happening.

To begin, consider the agents’ strategy in the deadlock equilibrium (which had
just one pivotal event, piv1). Here, given that maxP (0) < maxP (1), the principal’s
best response is no longer constant; it increases at the cutoff m1 of the process.
So U(ω; ηN) > 0. Now consider the more general case in which there are two
pivotal events. For the purposes of illustration, suppose these are when either
k−i = k̄ or k−i = ⌊m1N⌋ with ⌊m1N⌋ < k̄ (where k−i is the number of other
agents choosing action 1, from the point of view of agent i). Further suppose
that the average effect across the two events is zero in state 0, i.e., U(0; ηN) =

0. Informativeness means the mean action is higher in one state—say q(1;σN) <

q(0;σN)—and so the same is true for the relative likelihood of the two pivotal
events: Pr(k−i=k̄|ω=1;σN ,N)

Pr(k−i=⌊m1N⌋|ω=1;σN ,N)
< Pr(k−i=k̄|ω=0;σN ,N)

Pr(k−i=⌊m1N⌋|ω=0;σN ,N)
.19 The differing likelihood

ratios imply different average effects in the two states; thus U(1; ηN) ̸= 0.
Second, we observe that U(0; ηN) and U(1; ηN) must have the same sign. Oth-

erwise the agents’ best response would be uninformative, given (2) and the tie-
breaking rule.

Now, since U(0; ηN) and U(1; ηN) are non-zero and have the same sign, their
ratio pins down for each signal s a unique type 0 < pN(s) < 1 that is indifferent
after observing s:

U(0; ηN)

U(1; ηN)
=

Pr(ω = 1 | pi = pN(s), si = s)

Pr(ω = 0 | pi = pN(s), si = s)
. (11)

For generic agents’ prior distributions, information aggregation then follows from
showing that the limit indifferent types are interior, i.e.,

0 < lim
N→∞

pN(1) < lim
N→∞

pN(0) < 1. (12)

This means that, as N → ∞, the mean action differs across signals and thus across
the two states. Since the realized collective action is almost surely close to the mean
action in each state, the principal learns the state from observing it.

To conclude, we sketch the proof of (12). The basic argument is that, under par-

19The ordering q(1;σN ) < q(0;σN ) implies that the posterior likelihood ratio Pr(k−i=k|ω=1;σN ,N)
Pr(k−i=k|ω=0;σN ,N)

is strictly decreasing in k and thus this inequality, given ⌊m1N⌋ < k̄.
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tial commitment, a failure of information aggregation generically implies that, con-
ditional on being pivotal, an agent becomes certain (as N → ∞) that he is pivotal to
the principal’s preference for low versus high policies, i.e., limN→∞ Pri(piv0|piv; ηN , N) =

1. However, the principal’s updating from piv0 is bounded: It changes her prior to
a belief close to 1

2
, the indifference point. Hence, the agents’ updating from piv0

is bounded as well. The bounded updating implies bounds on the limit indifferent
types, and thus (12).20

In the non-generic knife-edge scenarios, equilibrium sequences with non-interior
limit indifferent types may exist. For these cases, we provide an alternative argu-
ment, based on the knife-edge condition and large deviation results that we derive
in Appendix A.

1.6 Equilibrium Existence

We now show that for the processes of interest in this paper, equilibria satisfying
the tie-breaking rule always exist.

Proposition 1. Take any non-constant, monotone process and any agents’ infor-
mation structure. For any N , there is an equilibrium that satisfies the tie-breaking
rule.

We cannot readily prove Proposition 1 by applying a standard fixed-point the-
orem, since we need to ensure that the tie-breaking rule holds. Instead, we identify
a set of candidate strategy profiles that adhere to this rule and construct equilib-
ria as fixed points in this set. (As usual, the details of the proof are given in the
appendix.)

The candidate strategy profiles are as follows. The agents use “monotone” strate-
gies σ, i.e., strategies under which the mean action is (weakly) higher in state 1 than
in state 0, and where the partisans choose their actions in accordance with their
types:

q(0;σ) ≤ q(1;σ), and σ(y, s) = y for all s ∈ {0, 1} and all y ∈ {0, 1}. (13)

The principal mixes over “monotone” strategies, defined as those in which the policy
choice x = x(k) is weakly increasing in the number of observed 1-actions k. That
is, x(k) ≥ x(k′) for all k, k′ ∈ {0, . . . , N} with k > k′.

20Precisely, limN→∞ Pri(piv0|piv; ηN , N) = 1 implies U(0;ηN )
U(1;ηN ) ≈ Pri(piv0|ω=0;ηN ,N)

Pri(piv0|ω=1;ηN ,N) , and the

bounded upating from piv0, i.e., limN→∞
Pri(piv0|ω=0;ηN ,N)
Pri(piv0|ω=1;ηN ,N) ∈ (0,∞) then implies (12).
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For the fixed-point argument, we consider a modification of the best-response
correspondence in which the set values are truncated to the set of candidate strategy
profiles, denoted by Σ. We verify that this modification meets the requirements of
Kakutani’s fixed point theorem. Note that it is non-trivial to show that it has non-
empty values; this holds essentially because the monotonicity of the process and the
players’ strategies implies that monotone best responses exist. The principal has a
monotone best response because (13) implies that her posterior is weakly increasing
in the number of 1-actions. In the formal proof we show that the agents have a
best response satisfying (13), through a detailed case analysis of their best-response
characterization (11).

Next, we lift the fixed-point problem to a finite-dimensional space. We represent
mixtures over the principal’s monotone strategies by vectors v = (v1, . . . , v|P×(N+1)|) ∈
[0, 1]|P×(N+1)| with

∑
l vl = 1 (note that the dimension of these vectors equals the

number of monotone strategies). We then observe that
(
q(0;σ), q(1;σ), v

)
is a suf-

ficient statistic for the best-response correspondence, given (1), (2), and (3). Hence
we can understand the modified best-response correspondence as a self-map on the
space of vectors (q, v) satisfying (13). This representation thus allows a direct ap-
plication of Kakutani’s fixed point theorem to show the existence of an equilibrium.

1.7 Payoff Guarantees: Proof of Theorem 1

In this section we put together the results of Sections 1.4–1.6 to prove Theorem
1. We show that all majority votes over exclusion of the maximal policy (i.e., the
candidate processes defined by (4)) have a payoff guarantee of 1−ε, and that 1−ε is
an upper bound on the payoff guarantee of any other process of partial commitment.

For any process P ∗ satisfying (4), equilibria satisfying the tie-breaking rule gen-
erally exist (Proposition 1), ruling out a payoff guarantee of G(P ∗) = −∞. Since
the principal learns the state under P ∗ (Theorem 3), the only way she will deviate
from the full-information choice is by choosing the policy 1− ε < 1 in state ω = 1

if constrained to do so. Consequently, a lower bound for the payoff guarantee is

G(P ∗) ≥
Pr(ω = 1) · 1

2
(1− ε)

Pr(ω = 1) · 1
2

= 1− ε.

This is also an upper bound for G(P ∗), since we have constructed equilibria in which
the ε-error is made (Theorem 2).

The same argument (Theorem 2) shows that 1− ε is an upper bound on G(P )

for any process P that excludes the policy x = 1 for some m. For any process
P that never excludes x = 1, as argued in Section 1.3, there is an uninformative
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equilibrium in which x = 1 is chosen in both states. Hence the payoff guarantee of
P has an even lower upper bound of

G(P ) ≤
Pr(ω = 1) · 1

2
− Pr(ω = 0) · 1

2
1
2
Pr(ω = 1)

= 1− Pr(ω = 0)

Pr(ω = 1)
< 1− ε.

(Here the last inequality holds because we assumed the principal’s prior is not
extreme, Pr(ω = 1) ≤ 1− ε; see Section 1.1.)21

The processes defined by (4) also maximize the agents’ ex-ante payoff guarantee,
provided their mean prior satisfies the same upper bound as the principal’s prior,
i.e., EF (pi) ≤ 1 − ε. This is simply because the linearity of the expected utility
in the prior means we can evaluate the agents’ payoff guarantee by replacing the
principal’s prior with their mean prior in the definition of G(P ). Doing so, we find
that the two inequalities above still hold (given that EF (pi) ≤ 1− ε), which implies
that the processes defined by (4) are also agent-optimal.

1.8 When Partial Commitment Outperforms Full Commit-

ment

In some situations, processes of partial commitment outperform full commitment
to precise single policies. Our next theorem presents one instance in which this is
true, namely, when there is no constraint on the expected share of partisan types.
We briefly discuss other possible instances at the end of this section.

Formally, in Theorem 4 we revisit our baseline model but drop the assumption
that PrF (pi = y) < 1

2
for each y ∈ {0, 1}. The theorem contradicts the usual

intuition, which is that the principal always benefits from full commitment power
and will not forgo it intentionally.

Theorem 4. When the expected share of partisan types y ∈ {0, 1} can be any
number in (0, 1), any robust optimal process is a process of partial commitment.
Any majority vote over exclusion of the maximal policy (i.e., any process satisfying
(4)) is robust optimal and has a payoff guarantee of 1− ε.

The following sketches the proof. Under the earlier constraint on the share of
partisans, a version of the modern Condorcet jury theorem held and full commit-
ment was optimal: Committing to the precise policy x = 0 if m ≤ 1

2
and to x = 1

otherwise had a payoff guarantee of 1 (Bhattacharya, 2013). By contrast, when
there is no constraint on the share of partisans, if the principal is committed to

21The calculation is as follows: 1− Pr(ω=0)
Pr(ω=1) ≤ 1− ε

1−ε < 1− ε.
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singleton policies, she may be forced to choose the same policy in both states on
account of the partisans, implying a failure of the Condorcet jury theorem and a
relatively low payoff guarantee.

To be precise, take any process P with singleton policy sets, and suppose the
expected share of partisans exceeds the process’s largest cutoff, e.g., PrF (pi = 1) >

mR. In all equilibrium sequences, the type-1 partisans choose their dominant strat-
egy, which is to match their action to their type. Hence the principal is required
to choose a particular policy xh (the sole element of P (1)) with probability con-
verging to 1 as N → ∞. The payoff guarantee of the process is thus bounded
above by xh − Pr(ω=0)

Pr(ω=1)
xh, which is strictly smaller than 1 − ε, since xh ≤ 1 and

Pr(ω = 1) < 1 − ε.22 A similar argument shows that any process that commits
to a singleton policy set after some observation has a payoff guarantee lower than
1− ε.23

On the other hand, the payoff guarantee of the processes defined by (4) remains
1−ε, as in Theorem 1, regardless of the share of partisans, simply because the proof
of Theorem 1 did not use the constraint on the share of partisans. The constraint
was imposed merely to compare our results to the Condorcet jury theorem in the
most transparent manner.

Let us conclude with a critical insight about information aggregation. It is
well known that the equilibrium sequences just described, in which the partisans
enforce the singleton commitment xh, do not aggregate information. Somewhat
surprisingly, partial commitment restores information aggregation. The reason was
laid out in Section 1.5, in the sketch of the proof of Theorem 3: Given the partial
commitment in the processes defined by (4), a failure of information aggregation
generically implies that, conditional on being pivotal, an agent becomes certain (as
N → ∞) that he is pivotal to the principal’s preference for low versus high policies.
However, this in turn implies information aggregation, as explained.

In future research, it may be worthwhile to investigate other instances in which
partial commitment outperforms full commitment. The literature on information
aggregation has provided settings in which all equilibrium sequences for binary
majority elections aggregate information, meaning that an outside observer could
learn the state from observing the vote margin; however, the outcomes are not

22The calculation is as follows: xh

(
1− Pr(ω=0)

Pr(ω=1)

)
≤ 1− Pr(ω=0)

Pr(ω=1) < 1− ε
1−ε < 1− ε.

23Suppose that P (mj) = {xh} for some xh ∈ P and j = 1, . . . , R + 1, and let γ = mj −mj−1

if j > 1 and γ = mj if j = 1. Suppose the expected share of non-partisans is smaller than γ
4 and

the expected share of 1-partisans is in [mj−1 +
γ
4 ,mj−1 +

γ
2 ] if j > 1 and in [0, γ

2 ] if j = 1. Then,
the principal is required to choose the policy xh with probability converging to 1 as N → ∞. The
same calculation as before implies a payoff guarantee smaller than 1− ε.
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full-information equivalent (see, e.g., Ekmekci and Lauermann, 2022). In such set-
tings, partial commitment might improve efficiency in a robust sense by allowing
for outcomes that are nearly full-information equivalent.

2 Extensions with More General Preferences

2.1 Heterogeneous Ex-Post Preferences

In the baseline model of Section 1, all of the players agree unanimously on the best
policy when the state is known. However, such unanimity is often unrealistic. For
instance, a reform with distributive consequences may benefit different groups of
voters depending on the state of the world; see, e.g., Fernandez and Rodrik (1991)
or Ali et al. (2025). In this section we extend our model to capture such scenarios,
by allowing for more general state-dependent preferences: In addition to partisans
who always prefer x = 1 or x = 0, and agents who prefer x = 1 in ω = 1 and
x = 0 in ω = 0, we now consider agents who prefer x = 0 in ω = 1 and x = 1

in ω = 0. An agent’s type is now given by a prior belief pi ∈ [0, 1] and a pair
ti =

(
ti(0), ti(1)

)
∈ [0, 1]2 which describes the agent’s constant marginal benefit

from the policy choice in each state. Types with ti(0) >
1
2
> ti(1) prefer x = 0 in

ω = 1 and and x = 1 in ω = 0.24

We can study the distribution of these more general types in terms of a funda-
mental object Φ: Given any possible average effects U(0; η) and U(1; η) and any
signal likelihood ratio l := Pr(si=s|ω=0)

Pr(si=s|ω=1)
, Φ maps the triple

(
U(0; η), U(1; η), l

)
to the

likelihood that a randomly drawn type with signal s prefers the 1-action. We call
this likelihood the mean preferred action). The map Φ is the type distribution’s fun-
damental, since the set of equilibrium outcomes depends on the distribution solely
through Φ. We prove this and all results in this section in the online appendix.

The arguments for information aggregation and robust optimality given in Sec-
tion 1 can be extended to the present context under a monotonicity condition for
Φ, an adaptation of “strong preference monotonicity” (Bhattacharya, 2013). This
condition is defined as follows. Observe that whenever U(1; η) ̸= 0, Φ depends only
on z1 =

U(0;η)
U(1;η)

· l and the sign z2 of U(1; η). To be precise, when U(1, η) > 0, a type

24We assume the pairs ti are drawn from an absolutely continuous distribution and indepen-
dently from priors, signals, and the state, as well as independently across agents.
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with signal s prefers the 1-action if and only if

pi

(
ti(1)−

1

2

)
· Pr(si = s|ω = 1)

Pr(si = s)
· U(1; η)

− (1− pi)
(1
2
− ti(0)

)
· Pr(si = s|ω = 0)

Pr(si = s)
· U(0; η) ≥ 0,

which occurs if and only if

z1 · (1− pi)
(1
2
− ti(0)

)
≤ pi

(
ti(1)−

1

2

)
. (14)

When U(1; η) < 0, the same statement holds with the inequality reversed. We say
Φ is monotone if it has a continuous derivative ∂Φ

∂z1
that has the same non-zero sign

for all z1 ∈ (0,∞), given any fixed z2 ∈ {−1, 1}.
If we assume monotone type distributions, the conclusion of Theorem 1 con-

tinues to hold in this setting: The processes (4) remain robust optimal, and they
maximize the principal’s payoff guarantee across all agents’ information structures
and monotone type distributions. The key implication of the monotonicity condi-
tion is that the agents have informative best responses when U(0;ηN )

U(1;ηN )
∈ (0,∞), i.e.,

the best response satisfies q(0;σN) ̸= q(1;σN); this is an immediate consequence of
(14). The formal proof of the optimality result relies on this observation at critical
points. Otherwise, it closely follows the proof for the baseline model; see the online
appendix.

Note that monotonicity is satisfied in the baseline model, as all non-partisans
have the same preference type. One can show that for some parameters of the
model (i.e., for some agents’ information structures and majority cutoffs), non-
monotonicity implies a failure of information aggregation for the processes (4), in
the same way that it implies a failure of the Condorcet jury theorem (Bhattacharya,
2013).

Finally we remark that, as in the baseline model, the processes (4) maximize
the agents’ ex-ante payoff guarantee as well as the principal’s, given two conditions
in addition to monotonicity. The first is that the mean marginal benefit exceeds the
marginal cost in state 1 but not in the state 0: 0 ≤ E

(
ti(0)

)
< c < E

(
ti(1)

)
≤ 1.

This implies that the “mean” agent and the principal have the same preference
ranking of policies when the state is known. The first condition is satisfied, for
example, when the principal is a social planner who maximizes the agents’ utilitarian
welfare. These incentives may arise from political economy forces under a broad set
of conditions, cf. the literature on political agency and electoral accountability.25

25For the political agency literature, see Barro (1973); Ferejohn (1986) among others; for the
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The second condition is that

1− EF (pi)

EF (pi)
·

1
2
− E

(
ti(0)

)
E
(
ti(1)

)
− 1

2

≥ ε.

The relevant implication of this condition is that if the policy outcome is x = 1 in
both states, the agents’ mean payoff is not too close to their mean full-information
payoff.

2.2 Single-Basin Preferences and Monotone Equilibria

We now relax the assumption of constant marginal cost and benefit in our baseline
model; we suppose instead that the players’ ex-ante preferences are single-basin over
the policy space. This condition is intended to capture settings in which intermedi-
ate policy choices are inefficient. Examples include public infrastructure decisions
that involve economies of scale such that, depending on public demand, the optimal
choice is either the status quo or a “full solution.” Similarly, compromises between
opposing policies are often inherently inefficient. For instance, consider a company
debating whether to replace its current management. A complete overhaul would
enable a fresh start, whereas a partial replacement might fuel internal conflicts or
prolong existing divisions.

Formally, we maintain the assumptions of the baseline model, but we allow the
players to have any common state-dependent payoffs u(x, ω) with u(x, 0) < u(x′, 0)

and u(x, 1) > u(x′, 1) for all x > x′. Letting c(x) = −u(x, 0) and b(x) = u(x, 1) −
u(x, 0), we can express the payoffs as

u(x, ω) = −c(x) + b(x)ω

for ω ∈ {0, 1}. We assume that c′(x)
b′(x)

is constant or strictly decreasing in x. (Note
that the baseline model can be recovered as the linear case of this model, with
c(x) = x

2
and b(x) = x.) The expected utility given a fixed prior p, which we denote

by u(x, p) = −c(x)+b(x)p, has negative derivative if and only if c′(x)
b′(x)

≥ p. Thus, any
player’s ex-ante expected utility is single-basin with the set of minima, the basin,
decreasing in p.

Theorem 5 establishes a version of our prior optimality result (Theorem 1) for
this generalized setting. For tractability, we focus on monotone processes P and
equilibria in monotone strategies, as defined in Section 1.6; see (13) and thereafter.

literature on electoral accountability, see, e.g., the survey in Ashworth (2012). Relatedly, Battaglini
(2017) provides an excellent discussion, with several explicit examples.
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Monotone processes capture the idea that elected officials receive “mandates” from
the populace to make decisions, with more extreme decisions being feasible when
the official has more support.26 Non-monotone processes and strategies are less
intuitive and may be hard to implement.27

For the statement of the theorem, note that the assumptions on the pref-
erences imply a p̄ ∈ (0, 1), so that all players prefer the maximal policy (i.e.,
1 = argmaxx∈P u(x, p)) if holding a belief p > p̄ and the minimal one (i.e., 0 =

argmaxx∈P u(x, p)) if holding a belief p < p̄.

Theorem 5. Let c′(x)
b′(x)

be constant in x or strictly decreasing in x and Pr(ω) > p̄.
Then any majority vote over exclusion of the maximal policy, i.e., any process of
the form (4), has the following properties:

1. It has a payoff guarantee of 1−ε across all agents’ information structures and
all monotone equilibria.

2. It is robust optimal among all monotone processes of partial commitment.

The proof is in the online appendix. Here we describe the relevance of the
assumptions in the theorem about the principal’s prior and the players’ preferences.

The assumption Pr(ω) > p̄ and the restriction to monotone equilibria together
imply that any monotone equilibrium of a process of the form (4) is informative
and has strictly positive average effects:28

U(1; η) := E
(
u(x, 1)|ai = 1; piv, η,N

)
− E

(
u(x, 1)|ai = 0; piv, η,N

)
> 0,

U(0; η) := −
(
E
(
u(x, 0)|ai = 1; piv, η, N

)
− E

(
u(x, 0)|ai = 0; piv, η,N

))
> 0.

This is because the principal’s equilibrium strategy is not only monotone, i.e.,
weakly increasing, but also non-constant: At m = 1, her belief exceeds the prior
(which exceeds p̄), so she chooses x(m) = 1. At m = 0, her choice is constrained
to be strictly smaller than x = 1. Since the tie-breaking assumption implies in-
terior mean actions (cf. Section 1.1), all observations m are on path, including

26The idea that elected officials have mandates to govern, and that these mandates are stronger
for officials with greater support, has been explored previously; see, e.g., Herrera, Llorente-Saguer
and McMurray (2019) and Damiano et al. (2025).

27There is a growing literature on voting and communication games that focuses on monotone
equilibria; see, e.g., Krishna and Morgan (2001), Chen, Kartik and Sobel (2008), and Dekel and
Piccione (2000).

28We abuse notation slightly here: Strictly speaking, our original definition is consistent
with U(1; η) = 2 ·

(
E
(
u(x, 1)|ai = 1; piv, η,N

)
− E

(
u(x, 1)|ai = 0; piv, η,N

))
and U(0; η) =

−2
(
E
(
u(x, 0)|ai = 1; piv, η,N

)
− E

(
u(x, 0)|ai = 0; piv, η,N

))
.
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the jump points where x(m) < x(m + 1
N
), and we conclude that the average

effects are strictly positive. Since a type with signal s prefers the 1-action if
Pri(ω = 1|pi = p, si = s)U(1; η) − Pri(ω = 0|pi = p, si = s)U(0; η) > 0, this
implies some types best-respond informatively.

The assumption that c′(x)
b′(x)

is decreasing ensures a monotone comparative statics
result. While argmaxx∈P u(x, p) is increasing even without the assumption, the
same is not true for argmaxx∈P (m) u(x, p)—that is, when taking into account the
constraints imposed by the process P on the principal’s choice. We show that the
assumption ensures that the correspondence argmaxx∈P (m) u(x, p) has a monotone
selection given any monotone process and strategy profile. In other words, the
principal has a monotone best response.

Given these two observations, one can prove Theorem 5 by mimicking the proof
of Theorem 1 (in fact, at some points the latter can be shortened).

3 Further Results for the Baseline Model

Here we discuss several more results concerning the baseline model of Section 1.

Arbitrary Finite Policy Sets. Majority votes over exclusion of the maximal
policy (the processes defined by (4)) are robust optimal for any policy set P =

{0, x2, . . . , xl−1, 1} with 0 < x2 < . . . < 1 and l > 2,29 provided that

1− Pr(ω = 0)

Pr(ω = 1)
≤ xl−1,

i.e., that the principal’s prior is not too large relative to the second-largest pol-
icy. This is because the proof of robust optimality in Theorem 1 used the specific
properties of the policy set only in the evaluation of payoff guarantees (in the
two inequalities in Section 1.7). In those calculations, all that mattered was that
1− Pr(ω=0)

Pr(ω=1)
≤ 1− ε. This is exactly the condition above, since in our original model

we assumed xl−1 = 1− ε.

Efficient Equilibria. Many processes with a single cutoff have efficient equilib-
rium sequences for any agents’ information structure. In the appendix we prove a
sufficient condition for this property, which is that the minimum and maximum poli-
cies are increasing, i.e., minP (0) < minP (1) and maxP (0) < maxP (1), and that

29We assume l > 2 because if P contains only one or two policies, these are not well-defined
processes of partial commitment.
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the ex-post optimal policies are not excluded, i.e., minP (0) = 0 and maxP (1) = 1

(Theorem 10).

Miscoordination: Other Inefficient Equilibria. Differences between the prin-
cipal’s and the agents’ priors can give rise to inefficiencies. Theorem 6, below, shows
that if the principal is more pessimistic about the possible benefits from the policy
than a sufficient mass of agents, there are equilibria in which the agents miscoor-
dinate on “counteracting” the principal’s bias: They constrain the principal to the
highest policy range available, given the announced process, with probability close
to 1.

Formally, define p̄ by

Pri(ω = 1 | pi = p̄, si = 0)

Pri(ω = 0 | pi = p̄, si = 0)
=

Pr(ω = 0)

Pr(ω = 1)

Pr(si = 1|ω = 1)

Pr(si = 1|ω = 0)
. (15)

That is, the principal’s posterior conditional on a 1-signal equals the type p̄’s pos-
terior conditional on a 0-signal. Clearly, Pr(ω = 1) < p̄.

Theorem 6. Consider any non-constant, monotone process with cutoffs 0 < m1, . . . <

mR < mR+1 = 1. There is some
¯
q ∈ (mR, 1) such that, when 1 − F (p̄) >

¯
q,

there is a sequence of equilibrium strategies (σN)N∈N for which limN→∞ Pr(mR <

m | σN , N) = 1.

The proof of Theorem 6 is in the appendix. For the converse scenario, where the
priors are close, we showed in Section 1.4 that there are often inefficient equilibria in
which agents act approximately truthfully. Taken together, these results show that
partial commitment gives rise to inefficient equilibria, independent of the scenario.

When Is Vagueness Necessary for Robust Optimality? Theorem 1 estab-
lishes that some robust optimal processes are vague—they exclude at most one
policy from the policy space for every collective action. This result can be strength-
ened under two conditions: (1) if we restrict to processes map each m to connected
sets, and (2) if the principal’s prior is sufficiently close to 1

2
. Then, all robust op-

timal processes must exhibit vagueness, making it a necessary condition for robust
optimality.

To understand this necessity, consider the case where the prior is arbitrarily
close to 1

2
and suppose a process maps some m to a connected policy set P (m) =

{xj, . . . , xk} where either j > 1 or k < l − 1 (i.e., the set excludes at least two
policies). Given x2 = 1− xl−1 = ε, Theorem 2 implies that such a process achieves
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a strictly suboptimal payoff guarantee of less than 1 − ε. By contrast, the vague
processes of Theorem 1 achieve a payoff guarantee of 1− ε.

4 Related Literature

We now discuss our results in the context of the wider literature.

Information aggregation. Our paper offers several new insights in relation to
the existing work on information aggregation in collective choice—in particular, the
influential literature around the Condorcet jury theorem.

First, the paper provides a comprehensive comparison of mechanisms, including
those considered in previous work (majority elections with full commitment and
cheap talk). Theorems 1 and 5 show that, because of the interplay between a coor-
dination problem and an information aggregation problem, a mechanism involving
vague (that is, almost minimal) commitment is robust optimal. In particular, full-
commitment mechanisms are not optimal. By contrast, Battaglini (2017) stresses
the value of commitment: Based on the Condorcet jury theorem, he argues that full
commitment is valuable since it implies better information aggregation properties
than the no-commitment cheap-talk process (Battaglini, 2017, Proposition 6). The
stark difference between our results and those in Battaglini arises because our com-
parison includes processes of partial commitment and because our setting differs
substantially from his. In particular, we drop the constraint on the proportion of
partisans that underpins the Condorcet jury theorem, and we consider a continuous
agent type instead of a discrete one.30

Second, the literature on majority elections has identified various deviations
from the benchmark model of the Condorcet jury theorem that imply a failure of
coordination among the agents; see, e.g., Ekmekci and Lauermann (2020), Mandler
(2012), Bouton and Castanheira (2012), and Feddersen and Pesendorfer (1997).
We add the observation that deviations from full commitment power, even minimal
ones, imply a coordination failure (Theorem 2). Most strikingly, the approximation
of a majority vote between x = 0 and x = 1 has a payoff guarantee lower than
random choice between x = 0 and x = 1; cf. the discussion in Section 1.3.

Third, our results highlight that the selection of the collective choice mechanism
is critical in settings with multiple pivotal events: In our setting, even when all

30The result in Battaglini relies on the observation that cheap talk does not aggregate infor-
mation if there is a large gap between the support of the agents’ prior and the principal’s prior,
relative to the informativeness of the agents’ signals. Our assumption of full support rules out the
possibility of a gap; see Section 1.8.
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players have approximately the same preferences and priors, the information ag-
gregation properties of the mechanism depend on the exact process chosen. Under
the vague commitment processes (4), the multiple pivotal events ensure and re-
store information aggregation, relative to the full-commitment majority rules with
a single pivotal event (see Theorem 5). Conversely, given processes with balance,
the multiple pivotal events imply a failure of information aggregation, even in all
of the scenarios in which the full-commitment majority rules aggregate informa-
tion (see Theorem 3). Previous works have examined various models of majority
elections exhibiting multiple pivotal events. Different types of pivotal events have
different implications for the alignment of the players’ preferences, and thus differ-
ent implications for information aggregation: Ahn and Oliveros (2012) and Razin
(2003) document aggregation failures due to preference conflicts, while Damiano
et al. (2025) document instances in which an additional pivotal event aligns the
voters’ preferences and promotes information aggregation. Our Theorem 6 has the
same flavor: It identifies inefficient equilibria that are driven by preference conflicts
between the agents and the principal.

Numerous more distantly related models have been used to study information
aggregation in politics under other conditions; see, e.g., Lohmann (1994), Bond and
Eraslan (2010), Barelli, Bhattacharya and Siga (2022), Ekmekci and Lauermann
(2022), and Chen (2025).

Delegation. Following Holmström (1978) and Alonso and Matouschek (2008),
there has been a large literature studying the choices made by a principal who can
delegate a decision to a single privately informed agent. However, none of this work
has considered settings with a large number of agents, as our paper does. To our
knowledge, the only exception is Alonso, Dessein and Matouschek (2008).31

The political science literature has used the single-agent framework in several im-
portant applications that actually feature many agents. The assumption of a single
agent is typically justified by appealing to the idea of a “representative agent”; how-
ever, it precludes any analysis of the agents’ coordination issues. Our results provide
a new perspective on several of these applications, by highlighting the relevance of
coordination issues. For example, Kartik, Van Weelden and Wolton (2017) apply
the single-agent framework to study the so-called trustee-versus-delegate trade-off,
where the goal is to understand how much autonomy should be granted to elected
representatives. They consider an electoral competition model in which elected

31Their paper considers a quite different notion of coordination, where the utilities of the two
agents directly depend on the proximity of their individual decisions d1 and d2.
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candidates have superior information but also have preference conflicts relative to
voters. For this model, they show that partial autonomy arises in equilibrium.32 By
contrast, in our baseline model, the agents hold superior information and there is
no ex-post preference conflict. Here we find that it is optimal to grant almost full
autonomy to the principal, owing to a coordination problem of the agents.

The single-agent framework has also been used to study the “congressional con-
trol problem”—that is, the question of how elected officials can control privately
informed bureaucrats, such as national security agencies, while also extracting their
information. See Gailmard and Patty (2012) for the most recent review and Antic
and Iaryzcower (2020) for a newer contribution.33

Sincere Voting. A longstanding question in political science is the extent to
which citizens vote “sincerely” (see, e.g., Farquharson, 1969 and Palfrey, 2009).
Previous theoretical work has shown that in elections with full commitment power,
sincere voting is generically not an equilibrium when the electorate is large (see,
e.g., Austen-Smith and Banks, 1996). In contrast, Theorem 2 and its proof show
that, under partial commitment, sincere voting by approximately all agents is an
equilibrium for a nontrivial range of information structures. Similar observations
have been made in settings with participation costs (Krishna and Morgan, 2012)
or aggregate uncertainty about the fraction of uninformed voters (Acharya and
Meirowitz, 2017).

5 Conclusion

In this paper, we proposed and analyzed a model of partial commitment in a
collective choice problem. Our model complements existing ones that have been
used to study information aggregation in politics (Austen-Smith and Banks, 1996;
Battaglini, 2017; Feddersen and Pesendorfer, 1997; Krishna and Morgan, 2012), as
well as problems of delegation (Alonso and Matouschek, 2008; Holmström, 1978).
In relation to information aggregation, our work addresses frictions in commitment
power and explores a novel set of choice mechanisms. The framework we establish
applies to many mechanisms featuring partial commitment that are widely used in
the real world, such as public referenda and customer feedback polls (as mentioned

32Fox and Shotts (2009) also study the trustee-versus-delegate trade-off but do not invoke the
framework of Holmström (1978).

33Clearly, the questions described here go beyond delegation: They concern the structure of
democratic representation in general. As such, they relate to a massive literature on representation
in political science to which I cannot do justice here; see Urbinati and Warren (2008) for a review.
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in the introduction). In relation to delegation, we depart from the existing literature
in considering a principal facing not just one agent but a large group of agents. We
discuss natural applications to politics and the management of large organizations.

Our main results (Theorems 1 and 5) highlight “vagueness” (minimal commit-
ment) as a valuable tool for managing large groups of privately informed agents.
When there is uncertainty about the information environment, a mechanism under
which the principal is minimally bound by the input of the agents allows her to
robustly aggregate the agents’ private information while retaining flexibility in her
choice.

The starkness of our main result may be thought-provoking: What additional
factors might limit the usefulness of vague commitments? As an example, in Section
2.1 we provided some initial observations for scenarios in which the players’ ex-post
preferences are heterogeneous. In future work, it may be interesting to explore
the comparative statics of preference conflicts further, or to identify other critical
factors.

Our results suggest several broader questions about governance that may also
inspire future work. First, to what extent are rules (i.e., commitments to mech-
anisms) useful in highly uncertain environments? Intuitively, there seems to be a
tension between adherence to fixed rules and robustness to uncertainty. Theorem
5 touches upon this issue by showing that the flexibility of partial commitment
may offer advantages over precise commitment, in the face of uncertainty about the
number of partisans among the agents.34

Second, our results point to a trade-off related to coordination and informa-
tion transmission. A principal facing a group of agents can incentivize them to
transmit information by promising to delegate decision-making power to them (i.e.,
by making commitments); however, this will be costly if the agents cannot coor-
dinate on a good decision. Our results show that in large groups, the trade-off
becomes extreme, so that minimal delegation to the group is optimal. Intuitively,
the larger the group of agents, (a) the more information they hold and the easier it
is to learn from them, and (b) the harder it is to coordinate among them. Several
questions for future research naturally ensue; for example, how should a principal
use commitments to manage a group of intermediate size? While in this paper we
assumed one-way communication from the agents to the principal, how should the
communication between the players be organized in general?

Finally, our results may inspire experimental work on partial commitment in

34To study this question, it may be helpful to adopt a version of the “robust mechanism design”
approach (Bergemann and Morris, 2005; Carroll, 2019).
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collective choice. Although much experimental work has explored standard mecha-
nisms such as simple majority or unanimity voting rules (cf. the surveys in Palfrey,
2009 and Palfrey, 2016), there has been very little work on alternative mecha-
nisms. Given the recent interest of policymakers around the globe in exploring
new democratic institutions (see, e.g., OECD, 2020), further empirical exploration
seems desirable.

Appendix

A Mathematical Preliminaries

A.1 Basics of Large Deviation Theory

Take a binomial distribution Xn with success probability q ∈ (0, 1) and sample size
n. Given any m ∈ (0, 1) with mn ∈ N, the probability of exactly mn successes out
of n trials is well known to be35

Pr (Xn = mn) = exp
(
− nKL(m, q) + o(n)

)
, (16)

where KL denotes the Kullback–Leibler divergence,

KL(m, q) = m log

(
m

q

)
+ (1−m) log

(
1−m

1− q

)
.

The idea of the proof of this fact, due to Cramér (1938), is to perform a change
of measure, the so-called Escher transform (Escher, 1932). Consider the binomial
distribution under which the event is not rare but rather typical, Zn ∼ B(n,m).
Then (16) follows from observing that

Pr (Xn = mn)

Pr(Zn = mn)
= exp

(
− nKL(m, q)

)
and Pr(Zn = mn) = exp

(
o(n)

)
. (17)

35Recall that a function f is o (n) if |f(n)|
n converges to 0 as n → ∞.
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For the equation on the left, note that

Pr(Zn = mn)

Pr (Xn = mn)
=

(
m

q

)nm(
1−m

1− q

)n(1−m)

= exp

(
log

((
m

q

)nm(
1−m

1− q

)n(1−m)
))

= exp

(
n

(
m log

(
m

q

)
+ (1−m) log

(
1−m

1− q

)))
.

The equation on the right holds because the probability density function (PDF)
of the binomial distribution peaks at its mean, implying Pr(Zn = mn) ∈ [ 1

n
, 1].

But for any sequence (xn)n∈N with xn ∈ [ 1
n
, 1], it holds that xn = exp

(
log(xn)

)
=

exp
(
o(n)

)
.

A.2 Taylor Approximations of the Kullback–Leibler Diver-

gence

Below we give two approximations of the Kullback–Leibler divergence

KL(m, q) = m log

(
m

q

)
+ (1−m) log

(
1−m

1− q

)
.

The first is for m ≈ q.36 For m = q + ε′ with small ε′, we expand the log terms
using the Taylor expansion log(1 + x) ≈ x− x2

2
around x = 0 to obtain

log
m

q
= log

(
1 +

ε′

q

)
≈ ε′

q
− (ε′)2

2q2
,

log
1−m

1− q
= log

(
1− ε′

1− q

)
≈ − ε′

1− q
− (ε′)2

2(1− q)2
,

and substitute:

KL(m, q) ≈ (q + ε′)

(
ε′

q
− (ε′)2

2q2

)
+ (1− q − ε′)

(
− ε′

1− q
− (ε′)2

2(1− q)2

)
.

36For two sequences (an)n∈N and (bn)n∈N, we write an ≈ bn if limn→∞
an

bn
= 1. Note that we

do not retain the subscript.
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Expanding the products and discarding all third-order terms, we have

(q + ε′)

(
ε′

q
− (ε′)2

2q2

)
≈ ε′ − (ε′)2

2q
+

(ε′)2

q
, and

(1− q − ε′)

(
− ε′

1− q
− (ε′)2

2(1− q)2

)
≈ −ε′ − (ε′)2

2(1− q)
+

(ε′)2

1− q
.

Noticing that ε′ cancels out, and simplifying the coefficients of (ε′)2, we have

KL(m, q) ≈
(
−(ε′)2

2q
+

(ε′)2

q

)
+

(
− (ε′)2

2(1− q)
+

(ε′)2

1− q

)
=

(ε′)2

2q
+

(ε′)2

2(1− q)

=
(ε′)2

2

(
1

q
+

1

1− q

)
.

We thus obtain the quadratic approximation

KL(m, q) ≈ (m− q)2

2q(1− q)
for m ≈ q. (18)

For the second approximation, consider q1 ≈ q2. Note that ∂
∂q
KL(m, q) = −m

q
+

1−m
1−q

. We use linear Taylor approximations of KL(m, q1) and KL(m, q2) around the
midpoint q̄ = q1+q2

2
,

KL(m, q1) ≈ KL(m, q̄) +
∂

∂q
KL(m, q)|q=q̄(q1 − q̄),

KL(m, q2) ≈ KL(m, q̄) +
∂

∂q
KL(m, q)|q=q̄(q2 − q̄),

to approximate the difference of these two quantities:

KL(m, q1)−KL(m, q2) ≈
∂

∂q
KL(m, q)|q=q̄(q1 − q2)

=

(
1−m

1− q̄
− m

q̄

)
(q1 − q2). (19)

A.3 Monotonicity Properties of Binomial Distributions

In this section we make two useful observations about the PDFs of binomial distri-
butions. The first is that the binomial distribution Xn ∼ B(n, q) has an inverse-U-
shaped PDF, with a unique mode at ⌊(n + 1)q⌋ if (n + 1)q is not an integer, and
otherwise with two modes given by (n+ 1)q and (n+ 1)q− 1; see, e.g., page 112 in
Chapter 3.4 of Johnson, Kemp and Kotz (2005).
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Claim 1. Take a binomial distribution Xn ∼ B(n, q). If (n+ 1)q ∈ N, then

Pr(Xn = k) < Pr(Xn = k′) for all k < k′ ≤ (n+ 1)q − 1,

Pr(Xn = k) = Pr(Xn = k′) for k = (n+ 1)q − 1 and k′ = (n+ 1)q,

Pr(Xn = k) > Pr(Xn = k′) for all k′ > k ≥ (n+ 1)q.

If (n+ q)q /∈ N, then

Pr(Xn = k) < Pr(Xn = k′) for all k < k′ ≤ ⌊(n+ 1)q⌋,

Pr(Xn = k) > Pr(Xn = k′) for all k′ > k ≥ ⌊(n+ 1)q⌋.

The second observation establishes a monotonicity property enabling us to com-
pare the PDFs of binomial distributions with different success probabilities.

Claim 2. For Xn ∼ B(n, q) and Yn ∼ B(n, p) with p < q, the following holds: For
any k, k′ ∈ {0, . . . , n}, if k < k′, then Pr(Yn=k′)

Pr(Yn=k)
< Pr(Xn=k′)

Pr(Xn=k)
.

Proof. For a binomial distribution Zn ∼ B(n, θ),

Pr(Zn = k′)

Pr(Zn = k)
=

(
n
k′

)(
n
k

) ·
(

θ

1− θ

)k′−k

.

Comparing the likelihood ratios, we have

Pr(Yn = k′)/Pr(Yn = k)

Pr(Xn = k′)/Pr(Xn = k)
=

(
p(1− q)

q(1− p)

)k′−k

. (20)

The ordering p < q implies p(1−q)
q(1−p)

< 1. Since k′ > k, it follows that the ratio (20) is
strictly smaller than 1, establishing the claim.

The relevance of the mathematical preliminaries presented in this appendix for
our collective choice model derives from the fact that, for any symmetric strategy
σ of the agents, the number of 1-actions taken within a group of N − 1 agents
follows a binomial distribution with success probability q(ω′;σ) = E

(
σ(s)|ω = ω′

)
.

The pivotal events in our model thus correspond to point events of a binomial
distribution, and (16) provides a suitable approximation of their likelihood. To be
precise, if we let q = q(ω′, σ) and m =

⌊mjN⌋
N

for j > 0, then (16) becomes

Pr(pivj|ω = ω′;σ,N) = exp
(
− (N − 1)KL

(⌊mjN⌋
N

, q(ω′;σ)
)
+ o (N)

)
.

(21)
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Similarly, if we let q = q(ω′, σ) and m = k
N

for k ∈ {k̄, k̄ + 1}, then (16) becomes

Pr(piv0,k|ω = ω′;σ,N) = exp
(
− (N − 1)KL

( k

N
, q(ω′;σ)

)
+ o (N)

)
. (22)

B Proof of Theorem 2

Take any process of partial commitment with cutoffs m1, . . . ,mR+1. Fix j ∈
{1, . . . , R+1}. The following proof identifies an information structure and a corre-
sponding equilibrium sequence (σN)N∈N for which

lim
N→∞

Pr
(
m ∈ P−1

(
P (mj)

)
|σN , N

)
= 1. (23)

B.1 The Information Structures and Candidate Equilibrium

Strategies

For j = 2, . . . , R + 1, we take an agents’ information structure satisfying (5), (8),
(6) for the bound

¯
p(1) given by

¯
p(1)

1−
¯
p(1)

=
Pr(ω = 1)

Pr(ω = 0)

Pr(si = 0|ω = 1)

Pr(si = 0|ω = 0)

Pr(si = 1|ω = 0)

Pr(si = 1|ω = 1)
,

and

mj < Pr(si = 1|ω = 0) < Pr(si = 1|ω = 1) < mj+1. (24)

When j = 1, instead of the condition (24), we take an information structure satis-
fying

0 < Pr(si = 1|ω = 0) < Pr(si = 1|ω = 1) < mj.

For any x ∈ (0, 1), denote by px the (generalized) x-quantile of the prior distribution,
px = inf{p ∈ [0, 1] : F (p) ≥ δ}. Note that 0 < p δ

2
and p1− δ

2
< 1, given (6).

We consider the following candidate strategies. The principal follows a mixed
strategy randomizing between the pure strategy where she chooses

minP (mj + 1) if k ≤ k∗,

maxP (mj + 1) if k > k∗,
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and the pure strategy where she chooses

minP (mj + 1) if k ≤ k∗ + 1,

maxP (mj + 1) if k > k∗ + 1,

for some k∗ ∈ {1, . . . , N−1}. We identify these two pure strategies with the cutoffs
k∗ and k∗ + 1, and a mixture of the two with a random cutoff k̃ or its associated
probability z = Pr(k̃ = k∗).

The agents follow approximately truthful strategies σp under which, after ob-
serving signal si ∈ {0, 1}, agent i agent chooses ai = 1 if and only if pi ≥ p(si), for
some p(si) ∈ (0, 1). We identify σp with p :=

(
p(0), p(1)

)
and consider the set

D(δ) = {p : p δ
2
≤ p(1) ≤ pδ, Pr(ω = 1) ≤ p(0) < 1}.

For any p ∈ D(δ), the strategy σp is δ-approximately truthful since Pr(ω = 1) >

p1− δ
2
, by (6). We denote by p̂(p, z) =

(
p̂(0;p, z), p̂(1;p, z)

)
∈ [0, 1]2 the cutoffs of

the best response given p ∈ D(δ) and z.37 (Often we drop the arguments (p, z)

from the notation.)

B.2 The Equilibrium Construction

The first step in the construction of the equilibrium is to fix a cutoff p(0) ∈ [Pr(ω =

1), 1) and construct p(1) = p∗
(
1; p(0)

)
so that the principal is indifferent (Sections

B.2.1 and B.2.2). The second step is to show that an appropriate mixing z yields a
cutoff p∗(0) such that the agents’ strategy given by p∗(0) and p∗

(
1; p∗(0)

)
is a best

response to itself, i.e.,
p̂(p∗, z) = p∗

for p∗ =
(
p∗(0), p∗

(
1; p∗(0)

))
(Sections B.2.3 and B.2.4). In both steps, we will

identify an upper bound on δ and a lower bound on N that are required for the
arguments to hold.

B.2.1 The Principal’s Indifference Cutoff

The principal will be indifferent if she observes that k = k∗(p0)+ 1 out of N agents
have chosen the 1-action. For any fixed p(0) ∈ [Pr(ω = 1), 1), we define k∗(p0) + 1

as the minimal observed number of 1-actions such that the principal weakly prefers

37The best-response cutoffs are well-defined since the properties of p ∈ D(δ) and z imply
U(ω′) > 0 for ω′ ∈ {0, 1}.
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x = 1 given p(1) = pδ, i.e.,

Pr(ω = 1)

Pr(ω = 0)
·
Pr
(
k = k∗(p0) + 1|ω = 1; p(1) = pδ, p(0), N

)
Pr
(
k = k∗(p0) + 1|ω = 0; p(1) = pδ, p(0), N

) ≥ 1. (25)

Note that k∗(p0) exists in {0, . . . , N − 1} whenever N is sufficiently large and δ

sufficiently small. To see this, suppose δ ≤ 1
4
. This implies pδ < p1−2δ; thus, there

is a uniform lower bound γ > 0 such that

q(1;p)− q(0,p) ≥ γ for all p ∈ D(δ) with δ ≤ 1

4
, (26)

given the full support and differentiability of the distribution of the agents’ priors
and the different likelihood ratios of the two signals in the two states. The uniform
bound (26) implies that there is some N1 such that for all N ≥ N1 and p ∈ D(δ),

Pr
(
ω = 1|k = 0;p

)
Pr
(
ω = 0|k = 0;p

) =
Pr(ω = 1)

Pr(ω = 0)
·
(
1− q(1;p)

1− q(0;p)

)N

< 1.

The bound N1 guarantees the uniform existence of k∗(p0) ∈ {0, . . . , N − 1} for all
p0 ∈ [Pr(ω = 1), 1). Moreover, it guarantees that the best-response cutoff k̄ as in
(1) lies in {0, . . . , N − 1} for all p ∈ D(δ), not just those with p(1) = pδ.

B.2.2 Ensuring the Principal’s Indifference

Claim 3 says that, for any candidate cutoff p(0), we can find a cutoff p∗
(
1; p(0)

)
such that, given the agents’ strategy p =

(
p(0), p∗

(
1; p(0)

)
, the principal becomes

indifferent at k∗(p0) + 1, the cutoff defined in the preceding section.

Claim 3. There exists δ1 > 0 such that for all δ ≤ δ1 there exists N(δ) ∈ N and for
all N(δ) ≤ N , there is a continuous function that maps each p(0) ∈ [Pr(ω = 1), 1)

to a number p∗
(
1; p(0)

)
∈ [p δ

2
, pδ] satisfying

Pr(ω = 1)

Pr(ω = 0)
·
Pr
(
k = k∗(p0) + 1|ω = 1; p(1) = p∗

(
1; p(0)

)
, p(0), N

)
Pr
(
k = k∗(p0) + 1|ω = 0; p(1) = p∗

(
1; p(0)

)
, p(0), N

) = 1. (27)

Proof. We assume δ ≤ 1
4

throughout and proceed in two steps. In the first step, we
show that there is some N2 ∈ N and some γ1 > 0 such that

k̄

N
∈
(
q(0;p) + γ1, q(1;p)− γ1

)
(28)
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for all N ≥ N2, p ∈ D(δ), and δ ≤ 1
4
, where k̄ is the best-response cutoff as in (1).

We start by applying the first equation of (17) to obtain

Pr
(
k|ω = 1;p

)
Pr
(
k|ω = 0;p

)
= exp

(
−N

(
KL
( k

N
, q(1;p)

)
−KL

( k

N
, q(0;p)

)))
. (29)

for any k ∈ {0, . . . , N}. Consider

I := inf
p∈D(δ),δ≤ 1

4

(
KL
(
q(0;p) + γ1, q(1;p)

)
−KL

(
q(0;p) + γ1, q(0;p)

)
,

KL
(
q(1;p)− γ1, q(0;p)

)
−KL

(
q(1;p)− γ1, q(1;p)

))
,

which is strictly positive for γ1 > 0 sufficiently small by (26) and since the Kullback–
Leibler divergence has bounded partial derivatives on any compact interval.

Since q(1;p) > q(0;p), the function exp
(
−N

(
KL
(
m, q(1;p)

)
−KL

(
m, q(0;p)

)))
is strictly increasing in m. Thus,

Pr
(
k|ω = 1;p, N

)
Pr
(
k|ω = 0;p, N

) < exp(−NI) for any k with
k

N
≤ q(0;p) + γ1, and

Pr
(
k|ω = 1;p, N

)
Pr
(
k|ω = 0;p, N

) > exp(NI) for any k with
k

N
≥ q(1;p)− γ1.

Now, for any κ > 0, there is some N(κ) ∈ N such that for all N ≥ N(κ),

Pr(ω = 1)

Pr(ω = 0)
· exp(−NI) < κ and

Pr(ω = 1)

Pr(ω = 0)
· exp(NI) >

1

κ
;

and the same bounds apply to the posterior likelihood ratio Pr(ω=1|k;p,N)
Pr(ω=0|k;p,N)

for any
k
N

≤ q(0;p) + γ1 and for any k
N

≥ q(1;p)− γ1 respectively. Finally, we argue that
we can choose κ > 0 small enough so that (28) holds uniformly, that is, for all
N ≥ N2 := N(κ), p ∈ D(δ), and δ ≤ 1

4
. Since each private signal realization is

boundedly informative, we can choose κ > 0 small enough so that Pr(ω=1|k̄;p,N)

Pr(ω=0|k̄;p,N)
< κ

implies Pr(ω=1|k̄+1;p,N)

Pr(ω=0|k̄+1;p,N)
< 1 and Pr(ω=1|k̄;p,N)

Pr(ω=0|k̄;p,N)
> 1

κ
implies Pr(ω=1|k̄−1;p,N)

Pr(ω=0|k̄+1;p,N)
> 1 uniformly

across all such parameters. This way, if (28) would not hold for some parameters,
we would obtain a contradiction to the minimality of k̄.
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In the second step, we argue for the uniform existence of a number p∗
(
1; p(0)

)
∈

[p δ
2
, pδ] that solves (27). For this we establish the existence of some δ1 > 0 such

that for each δ ≤ δ1 there is some N(δ) ∈ N and

Pr(ω = 1)

Pr(ω = 0)
·
Pr
(
k = k∗(p0) + 1|ω = 1; p(1) = p δ

2
, p(0), N

)
Pr
(
k = k∗(p0) + 1|ω = 0; p(1) = p δ

2
, p(0), N

) < 1 (30)

for all N ≥ N(δ), δ ≤ δ1, and p(0) ∈ [Pr(ω = 1), 1).

(note that we fix p(1) = p δ
2
). Combining (25) and (30) and applying the interme-

diate value theorem then yields a p∗
(
1; p(0)

)
∈ (p δ

2
, pδ] such that the principal is

indifferent given p∗
(
1; p(0)

)
—i.e., (27) holds. Now, δ1 and N(δ) for δ ≤ δ1 exist

by the following argument. First, the minimality of k∗(p0) + 1 implies a uniform
bound γ2 > 0 such that

Pr(ω = 1|k = k∗ + 1;p, N)− 1

2
≤ γ2 (31)

for all N , δ ≤ 1
4
, and p(0) ∈ [Pr(ω = 1), 1). Second, note that the definition of

k∗(p0) equals that of k̄ for any p ∈ D(δ) with p(1) = pδ. So, the first step of this
proof implies

k∗(p0) + 1

N
∈
(
q(0;p) + γ1, q(1;p)− γ1

)
for all p ∈ D(δ) with p(1) = pδ, any δ ≤ 1

4
, and any N ≥ N2; cf. (28). Third,

note that q(0;p) and q(1;p) are both strictly decreasing in p(1). Given the second
observation and the properties of the prior and signal distribution, there is δ1 > 0

sufficiently small and γ3 > 0 so that

k∗(p0) + 1

N
∈
(
q(0;p), q(1;p)

)
and

∂

∂p(1)
KL
(k∗(p0) + 1

N
, q(0;p)

)
−KL

(k∗(p0) + 1

N
, q(1;p)

)
≥ γ3

for all p ∈ D(δ), δ ≤ δ1, and N ≥ N2. Jointly, these observations and (29) imply
that the posterior

Pr
(
k = k∗(p0) + 1|ω = 1;p, N

)
Pr
(
k = k∗(p0) + 1|ω = 0;p, N

)
is strictly increasing in p(1). Further, the derivative is bounded from below by an
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arbitrarily large number if N is arbitrarily large. Recalling (31) and (25), we see
that for any fixed δ ≤ δ1, there is N(δ) ∈ N such that (30) holds. As argued, (30)
implies the uniform existence of p∗

(
1; p(0)

)
∈ [p δ

2
, pδ] solving (27).

Finally, we note that p∗
(
1; p(0)

)
is unique and continuous. It is unique because

the posterior is strictly decreasing. The continuity of p∗
(
1; p(0)

)
in p(0) follows

from an application of the implicit function theorem.

B.2.3 Ensuring the First Fixed Point Equation

Claim 4 says that, for any candidate cutoff p(0), we can find a principal’s mixed
strategy z∗

(
p(0)

)
such that

p̂(1;p, z∗) = p∗
(
1; p(0)

)
. (32)

Claim 4. There exists δ2 > 0 such that for all δ ≤ δ2 there is N2(δ) ∈ N and for
all N2(δ) ≤ N , there is a continuous function that maps each p(0) ∈ [Pr(ω = 1), 1)

to a number z∗
(
p(0)

)
∈ [0, 1] such that (32) holds.

Proof. We fix p(1) = p∗
(
p(0)

)
for the duration of the proof of Claim 4. The proof

leverages the principal’s indifference between the pure strategies with cutoffs k∗(p0)

and k∗(p0) + 1. We will derive approximations of the indifference cutoff p̂(1;p, z)

for the agents’ best response, given either of the two pure strategies. The key is to
establish that for small δ and large N ,

p̂(1;p, z) < p∗
(
1; p(0)

)
if z = 0, and (33)

p̂(1;p, z) > p∗
(
1; p(0)

)
if z = 1. (34)

Since p̂(1;p, z) is continuous in the probability z—see (3) and (11)—an application
of the intermediate value theorem then implies the existence of a principal’s mixed
strategy z∗ ∈ (0, 1) such that p̂(1,p, z∗) = p∗

(
1; p(0)

)
.

In the following, we first establish that the inequalities (33) and (34) hold in the
limit as N → ∞ and then δ → 0, i.e., that limδ→0 limN→∞ p̂(1;p, z) < p∗

(
1; p(0)

)
if z = 0 and limδ→0 limN→∞ p̂(1;p, z) > p∗

(
1; p(0)

)
if z = 1. After that, we argue

the existence of the uniform bounds δ2 and N2(δ) for δ ≤ δ2.
We start with the pure strategy where 1− z = Pr(k̃ = k∗ + 1) = 1, so that

Pr(piv0|ω = ω′;p, N) = Pr(k−i = k∗ + 1|ω = ω′;p) for ω′ ∈ {0, 1}, (35)

where Pr(k−i = k∗ + 1|ω = ω′;p) is the posterior conditional on k∗ + 1 out of
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N − 1 agents choosing the 1-action. The principal is indifferent if she observes that
k = k∗ + 1 out of N agents have chosen the 1-action, so

Pr(ω = 1)

Pr(ω = 0)
=

Pr
(
k = k∗ + 1|ω = 0;p, N

)
Pr
(
k = k∗ + 1|ω = 1;p, N

) . (36)

Since the strategies given by p are δ-approximately truthful, as δ → 0 we have

1− q(ω′;p) → Pr(si = 0|ω = ω′), (37)

so that

Pr
(
k−i = k∗ + 1|ω = 0;p, N

)
Pr
(
k−i = k∗ + 1|ω = 1;p, N

) =

(
q(0;p)

q(1,p)

)k∗+1(
1− q(0;p)

1− q(1;p)

)N−k∗−2

→
Pr
(
k = k∗ + 1|ω = 0;p, N

)
Pr
(
k = k∗ + 1|ω = 1;p, N

) · Pr(si = 0|ω = 1)

Pr(si = 0|ω = 0)
. (38)

Recall the property (8). It implies (9), i.e., that in the limit as N → ∞, an agent
cares only about piv0. Hence, the conditions (11) for the indifference cutoffs p(s)

of the best response imply

lim
N→∞

p̂(s;p, z)

1− p̂(s;p, z)
=

Pr
(
piv0|ω = 0;p, N

)
Pr
(
piv0|ω = 1;p, N

) · Pr(si = s|ω = 0)

Pr(si = s|ω = 1)
. (39)

If we combine (35)–(38) and take δ → 0, this indifference condition becomes
limδ→0 limN→∞ p̂(1;p, z) =

¯
p(1) for s = 1, with

¯
p(1)

1−
¯
p(1)

=
Pr(ω = 1)

Pr(ω = 0)
· Pr(si = 0|ω = 1)

Pr(si = 0|ω = 0)
· Pr(si = 1|ω = 0)

Pr(si = 1|ω = 1)
. (40)

Next, consider the pure strategy where z = Pr(k̃ = k∗) = 1. For this strategy,

Pr(piv0|ω = ω′;p) = Pr(k−i = k∗|ω = ω′;p) for ω ∈ {0, 1}. (41)
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As δ → 0, we have

Pr
(
k−i = k∗|ω = 0;p, N

)
Pr
(
k−i = k∗|ω = 1;p, N

) =

(
q(0;p)

q(1,p)

)k∗

·
(
1− q(0;p)

1− q(1;p)

)N−k∗−1

→
Pr
(
k = k∗ + 1|ω = 0;p, N

)
Pr
(
k = k∗ + 1|ω = 1;p, N

) · Pr(si = 1|ω = 1)

Pr(si = 1|ω = 0)
. (42)

If we combine (36), (41), and (42), and take δ → 0, the indifference condition (11)
becomes limδ→0 limN→∞ p̂(0;p, z) = p̄(1) for s = 1, with

p̄(1)

1− p̄(1)
=

Pr(ω = 1)

Pr(ω = 0)
· Pr(si = 1|ω = 1)

Pr(si = 1|ω = 0)
· Pr(si = 1|ω = 0)

Pr(si = 1|ω = 1)
=

Pr(ω = 1)

Pr(ω = 0)
.

(43)

Now, we combine the approximations (40) and (43) with the requirement (6)
on the prior distribution to argue that (33) and (34) hold “in the limit.” The
requirement (6) implies

¯
p(1) < p δ

2
and p1− δ

2
< Pr(ω = 1). (44)

Combining this with Pr(ω = 1) ≤ p̄(1) and p δ
2
< p∗

(
1; p(0)

)
≤ pδ shows that

¯
p(1) < p∗

(
1; p(0)

)
< p̄(1). Hence, (40) and (43) imply (33) and (34) in the limit,

i.e., as N → ∞ and then δ → 0. Note that we used Claim 3 here, which guarantees
the existence of p∗

(
1; p(0)

)
for δ ≤ δ1 and N ≥ N(δ) (this also explains the order

of limits).
Next we show that there are uniform bounds δ2 > 0 and N2(δ) ∈ N for δ ≤ δ2

such that (33) and (34) hold not just in the limit, but for any δ ≤ δ2, N2(δ) ≤ N ,
and p ∈ D(δ) with p(1) = p∗

(
1; p(0)

)
. The limit analysis for p̂(1;p, z) used two

approximations, (37) and (39), and we argue that for any γ4 > 0 we can find
uniform bounds that ensure that both approximations hold up to an error term
of at most γ4. For (37), this is obvious for some δ2 small enough. For (39), this
follows from observing that the convergence here is exponential in the difference
minω′∈{0,1}KL

(
m0, q(ω

′;p)
)
− minω′∈{0,1}KL

(
m1, q(ω

′;p)
)
, and this difference is

uniformly bounded from below, given (8). Hence, for any γ4 > 0, the likelihood
ratio p̂(1;p,z)

1−p̂(1;p,z)
is γ4-close to its limit when N is above a certain bound N2(δ). This

way, the bounds analogous to (44) hold uniformly—p̂(1;p, z) < p δ
2

for z = 0 and

p1− δ
2
< p̂(1;p, z) for z = 1—and imply (33) and (34), given p δ

2
< p∗

(
1; p(0)

)
≤ pδ.

Finally, since (33) and (34) hold for any δ < δ2, N ≥ N2(δ), and p ∈ D(δ)
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with p(1) = p∗
(
1; p(0)

)
, for any p(0) ≥ Pr(ω = 1) (and δ ≤ δ2, N ≥ N2(δ)), an

application of the intermediate value theorem yields a z∗(p0) such that (32) holds.
Since p̂

(
1;p, z

)
is strictly monotone in z, the mixed strategy z∗ is unique; since

p̂
(
1;p, z

)
is continuous in p(0), z∗ is also continuous in p(0).

B.2.4 Ensuring the Second Fixed Point Equation

We use a fixed point argument to establish the existence of p∗(0) such that the
agents’ strategy given by

(
p∗(0), p∗

(
1; p∗(0)

))
is a best response to itself and the

principal’s mixed strategy z
(
p∗(0)

)
.

Fix any N and δ that satisfy the uniform bounds of Claim 4. This ensures that
the correspondence that maps any p(0) ≥ Pr(ω = 1) to the projection

min
(
Pr(ω = 1), p̂

(
0;p, z∗(p(0))

))
,

with p =
(
p(0), p∗

(
1; p(0)

))
, is well-defined. The correspondence is continuous in

p(0) ∈ [Pr(ω = 1), 1) because p̂
(
0;p, z∗(p(0))

)
is continuous in p(0). (The latter

holds because p∗
(
1; p(0)

)
and z∗(p0) are continuous in p(0) and all three parameters

p(0), p∗
(
1; p(0)

)
and z∗(p0) affect the likelihood of the pivotal events in a continuous

way.) For any fixed N , δ, and an agents’ information structure, the best response
p̂(0;p, z∗) is uniformly bounded, i.e., p̂(0;p, z∗) ≤ 1 − γ5 for some γ5 > 0 and all
p ∈ D(δ). So, the projection is a continuous self-map on the compact interval
[Pr(ω = 1), 1− γ5]. An application of Brouwer’s fixed point theorem then yields a
fixed point p∗N(0).

We argue that any fixed point p∗N(0) is interior, i.e., it is strictly greater than
Pr(ω = 1). To show this, we use (40). The best-response cutoff p̂(0;p, z∗) relates
to p̂(1;p, z∗) = p∗

(
1; p(0)

)
via the following equation:

p∗
(
1; p(0)

)
1− p∗

(
1; p(0)

) =
p̂(0;p, z∗)

1− p̂(0;p, z∗)
· Pr(si = 0|ω = 1)

Pr(si = 0|ω = 0)
· Pr(si = 1|ω = 0)

Pr(si = 1|ω = 1)
.

Comparing this to (40), we see that
¯
p(1) < p∗

(
1; p(0)

)
(which holds since N and δ

satisfy the uniform bounds of Claim 4; cf. the proof of this claim) implies Pr(ω =

1) < p̂(0;p, z∗). But this means that the boundary point p(0) = Pr(ω = 1) is not
a fixed point.

We can now finish the proof of Theorem 2. By definition, the agents’ strat-
egy σ∗

N given by an interior fixed point p∗N(0) and p∗N(1) = p∗
(
1, p∗N(0)

)
is a best
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response to itself, given z∗
(
p∗N(0)

)
. The sequence (σ∗

N)N∈N is a sequence of equi-

librium strategies. Since p∗N

(
1; p∗N(0)

)
< pδ and p∗N(0) ≥ Pr(ω = 1) > p1− δ

2
, by

construction, it is a sequence of δ-approximately truthful strategies. For any δ > 0

sufficiently small, an application of the weak law of large numbers implies (23). For
j ≥ 2, this follows from (24); for j = 1, this follows from the analogous condition
thereafter. This proves Theorem 2.

C Proof of Theorem 3: Sufficiency

C.1 Unique Interior Cutoff Types

Take any equilibrium of a monotone process with a single cutoff, with no balance,
and for which maxP (0) < maxP (1) holds. We show that, for any signal realization
s ∈ {0, 1}, there are unique types 0 < pN(s) < 1 that are indifferent after observing
s. As shown in the main text, for this it is sufficient to establish that U(ω) ̸= 0

for some ω ∈ {0, 1}, i.e., (10). Then U(ω) has non-zero and equal sign in both
states, and the unique indifferent types are pinned down by (11). We prove (10) by
contradiction, in two steps (Claim 5 and Claim 6).

Claim 5. Take any monotone process with a single cutoff and no balance, for which
maxP (0) < maxP (1) holds. Take any equilibrium η = (σ, k̄, x̃). If U(0; η) =

U(1; η) = 0, then

(i) 0 < q(1;σ) < q(0;σ) < 1, and

(ii) ⌊m1N⌋ ∈ {k̄, k̄ + 1}.

Proof. For item (i), clearly q(0;σ) ̸= q(1;σ) since otherwise the equilibrium is unin-
formative, and we have shown in the main text that no equilibrium is uninformative.
Next, q(0;σ) ∈ {0, 1} would imply q(0;σ) = q(1;σ), which we have just excluded. If
0 < q(0;σ) < q(1;σ) < 1, a 1-action is more likely in state 1. Thus, the principal’s
posterior and her policy choice x(k) are increasing in the observed ratio m = k

N
of

1-actions. We claim this implies that the average effect of an additional 1-action
on x is positive; that is, U(ω) > 0. To see this, note that all observations m are
on path since 0 < q(ω;σ) < 1. Bayesian consistency implies that Pr(ω = 1|m) > 1

2

for some m. Thus, the principal chooses maxP (m) after some m. Either she
chooses maxP (m) for all m, or she chooses maxP (m) for high m only and a pol-
icy smaller than maxP (m) otherwise; in either case, the claim follows from the
fact that maxP (0) < maxP (1). We conclude that U(1; η) = U(0; η) = 0 implies
0 < q(1;σ) < q(0;σ) < 1.
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For item (ii), we introduce some notation:

p1(ω
′) := Pr(k−i = k̄|ω = ω′;σ,N),

p2(ω
′) := Pr(k−i = k̄ + 1|ω = ω′;σ,N),

and

A1 := E(x|ai = 1, piv0,k̄; η,N)− E(x|ai = 0, piv0,k̄; η,N),

A2 := E(x|ai = 1, piv0,k̄+1; η,N)− E(x|ai = 0, piv0,k̄+1; η,N).

Now, suppose the counterstatement is true, i.e., ⌊m1N⌋ /∈ {k̄, k̄ + 1}. Then

k̄ < k̄ + 1 < ⌊m1N⌋, or (45)

⌊m1N⌋ < k̄ < k̄ + 1. (46)

We argue that∑
h=1,2

ph(ω
′)Ah < 0 (47)

for all ω′ ∈ {0, 1}, so that U(ω′) = 0 is equivalent to

1 +
Pr(piv1|ω = ω′; η,N)∑

h=1,2 ph(ω
′)Ah

(
E(x|ai = 1, piv1; η,N)− E(x|ai = 0, piv1; η,N)

)
= 0,

(48)

For this we make some preliminary observations, labeled (a)–(c). First, since
0 < q(ω′;σ) < 1, each action is taken with positive probability in each state. Thus,
there is a positive probability that k−i takes the value ⌊m1N⌋. This yields the
observation (a): Pr(piv1|ω′; η,N) > 0. Furthermore, since all possible observations
are on path, the principal chooses the lowest possible policy if the number of 1-
actions she observes is more than k̄ + 1, and the highest possible policy if the
number of 1-actions she observes is less than k̄ + 1. If the number of 1-actions she
observes is exactly k̄+1, then she is indifferent between all policies in P ( k̄+1

N
). Thus

we have the observation (b):

E(x|ai = 1, piv1; η,N)− E(x|ai = 0, piv1; η,N)

=

minP (1)−minP (0) if (45) holds,

maxP (1)−maxP (0) if (46) holds.

We also have (c):
∑

h=1,2 ph(ω
′)Ah ≤ 0.
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We now apply these observations in a case analysis. We start with the boundary
cases where k̄ ∈ {N−1, N}. For these values of k̄, (46) holds. Given the assumption
that maxP (1) − maxP (0) > 0, this means E(x|ai = 1, piv1; η,N) − E(x|ai =

0, piv1; η,N) = maxP (1)−maxP (0) > 0. But then (47) must hold, since otherwise
U(ω) = Pr(piv1|ω′; η,N)

(
maxP (1)−maxP (0)

)
> 0, given (a) and (c).

We turn to the case where k̄ /∈ {N − 1, N}. Here, 0 < q(ω′;σ) < 1 implies
there is a positive probability that k−i takes each of the values k̄ and k̄ + 1. In
our notation, ph(ω′) > 0 for h = 1, 2. The optimality of the principal’s equilibrium
strategy implies

A1 + A2 = minP (0)−maxP (0) < 0 if (45) holds,

A1 + A2 = minP (1)−maxP (1) < 0 if (46) holds.

Taken together, these observations imply (47).
Some final observations imply a contradiction to the assumption U(0; η) =

U(1; η) = 0 made in Claim 5. First, (47) implies that ph(ω′) > 0 for some h ∈ {1, 2},
given ω′ ∈ {0, 1}. Second, if ph(ω′) > 0 for some ω′ ∈ {1, 2}, the same is true for
all ω′ ∈ {1, 2}. Third, Claim 2 implies that for any h ∈ {1, 2} with ph(0) > 0 and
ph(1) > 0,

Pr(piv1|ω = 1; η,N)

ph(1)
<

Pr(piv1|ω = 0; η,N)

ph(0)
if (45) holds,

Pr(piv1|ω = 1; η,N)

ph(1)
>

Pr(piv1|ω = 0; η,N)

ph(0)
if (46) holds.

Inspecting (48), we see that U(ω′) cannot be zero for both states ω′, a contradiction.

Claim 6. Take any monotone process with a single cutoff and no balance for which
maxP (0) < maxP (1) holds. In any equilibrium η = (σ, k̄, x̃), either U(0; η) ̸= 0 or
U(1; η) ̸= 0.

To prepare for the proof, we decompose U(ω; η). Let O(P ) = P (0) ∩ P (1),

r1(ω
′) = Pr

(
piv0,k̄|ω = ω′; η,N

)
Pr
(
x̃ /∈ O(P )

)
,

r2(ω
′) = Pr

(
piv0,k̄|ω = ω′; η,N

)
Pr
(
x̃ ∈ O(P )

)
,

r3(ω) = Pr
(
piv0,k̄+1|ω = ω′; η,N

)
Pr
(
x̃ /∈ O(P )

)
,

r4(ω) = Pr
(
piv0,k̄+1|ω = ω′; η,N

)
Pr
(
x̃ ∈ O(P )

)
,
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Figure 3: The principal’s best-response correspondence after observing k ∈ {k̄, k̄ +
1, k̄ + 2} 1-actions, in all possible scenarios.

and

B1 = E
(
x|ai = 1, piv0,k̄, x̄ /∈ O(P ); η,N

)
− E

(
x|ai = 0, piv0,k̄, x̄ /∈ O(P ); η,N

)
,

B2 = E
(
x|ai = 1, piv0,k̄, x̄ ∈ O(P ); η,N

)
− E

(
x|ai = 0, piv0,k̄, x̄ ∈ O(P ); η,N

)
,

B3 = E
(
x|ai = 1, piv0,k̄+1, x̄ /∈ O(P ); η,N

)
− E

(
x|ai = 0, piv0,k̄+1, x̄ /∈ O(P ); η,N

)
,

B4 = E
(
x|ai = 1, piv0,k̄+1, x̄ ∈ O(P ); η,N

)
− E

(
x|ai = 0, piv0,k̄+1, x̄ ∈ O(P ); η,N

)
.

We carry out the proof by analyzing four cases, based on whether k̄ = ⌊m1N⌋
or k̄+1 = ⌊m1N⌋, and whether maxP (0) > minP (1) or maxP (0) < minP (1) (the
assumption of no balance rules out the case where maxP (0) = minP (1)). These
cases are labeled (a)–(d) as illustrated in Figure 3.

Proof. Note that ⌊m1N⌋ ∈ {k̄, k̄ + 1} implies piv1 = ∅ by definition. Thus,
U(ω′) =

∑
h rh(ω

′)Bh in all cases. We now assume for the sake of contradiction
that U(0; η) = U(1; η) = 0.

We define numbers j∗ and k∗ as follows: Set j∗ = 1 and k∗ = 3 in cases (a) and
(d); set j∗ = 3 and k∗ = 1 in cases (b) and (c). Inspection of Figure 3 shows that
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U(ω′; η) = 0 is equivalent to

rj∗(ω
′) · |Bj∗ | =

∑
j ̸=j∗

rj(ω
′) · |Bj|,

or equivalently

|Bj∗| =
∑
j ̸=j∗

rj(ω
′)

rj∗(ω′)
· |Bj|, (49)

and implies rj∗(ω
′) · |Bj∗| > 0, which in turn implies rk∗(ω

′) · |Bk∗| > 0.
Since 0 < q(1;σ) < q(0;σ) < 1 by Claim 5, an application of Claim 2 yields

Pr(k−i=k̄+1|ω=1;η,N)

Pr(k−i=k̄|ω=1;η,N)
< Pr(k−i=k̄+1|ω=0;η,N)

Pr(k−i=k̄|ω=0;η,N)
. Hence

∑
j ̸=j∗

rj(1)

rj∗(1)
· |Bj| <

∑
j ̸=j∗

rj(0)

rj∗(0)
· |Bj| in cases (a) and (d), (50)

∑
j ̸=j∗

rj(1)

rj∗(1)
· |Bj| >

∑
j ̸=j∗

rj(0)

rj∗(0)
· |Bj| in cases (b) and (c). (51)

Combining (49) with (50)–(51), we conclude that, in every case, either U(0; η) ̸= 0

or U(1; η) ̸= 0, which contradicts our initial assumption.

C.2 Information Aggregation

Claim 7. Take any monotone process with a single cutoff and no balance for which
maxP (0) < maxP (1) holds. Then any equilibrium sequence aggregates informa-
tion.

Proof. Take any equilibrium sequence (ηN)N∈N of a process meeting the conditions
in the claim. In Section C.1 we established the existence of unique indifferent types
0 < pN(s) < 1 for any signal s and any N .

Suppose that the limit indifferent types are interior, i.e., 0 < limN→∞ pN(1) <

limN→∞ pN(0) < 1.38 Then the limit of the mean action differs across signals and
thus across the two states, i.e., 0 < limN→∞ q(0;σN) ̸= limN→∞ q(0;σN) < 1. By
an application of the law of large numbers, the realized share of 1-actions is almost
surely close to the mean action in each state, implying that the principal learns the
state from observing it. Thus, information aggregates.

In the following, we consider the scenario in which the limit indifferent types

38It suffices to derive a contradiction for any subsequence along which pN (0) and pN (1) con-
verge, since the values of pN (0) and pN (1) lie in the compact set [0, 1]. For simplicity of notation,
we replace the original sequence with such a subsequence.
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are not interior,39

lim
N→∞

pN(0) = lim
N→∞

pN(1) ∈ {0, 1}. (52)

The arguments are based on a detailed analysis of point events for the realized num-
ber k−i of 1-actions of the other agents: For any sequence (mN)N∈N with mNN ∈ N
for all N , we apply (16) to obtain

Pr
(
k−i = mNN |ω = ω′;σN , N

)
= exp

(
− (N − 1)KL(mN , q(ω

′, σN)) + o(N)
)
,

and the left equation in (17) to obtain

Pr(ω = 1|k−i = mNN ;σN , N)

Pr(ω = 0|k−i = mNN ;σN , N)
=

Pr(ω = 1)

1− Pr(ω = 1)

· exp
(
(N − 1)

(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

)))
. (53)

Specifically, we will consider the sequences given by m′
N = ⌊m1N⌋

N
, m′′

N = k̄N
N

, and
m′′′

N = k̄N+1
N

, with k̄N being the unique number satisfying (1). These sequences
correspond to the pivotal events piv1, piv0,k̄N , and piv0,k̄N+1. We make three pre-
liminary observations: First, as long as kN ̸= N for all N large enough, we have

lim
N→∞

Pr(ω = 1|k−i = mNN ;σN , N)

Pr(ω = 0|k−i = mNN ;σN , N)
∈ (κ,

1

κ
) for mN ∈ {m′′

N ,m
′′′
N}, (54)

for some κ > 0, by the defining property (1) of k̄N (whenever we apply (54), we will
rule out the case kN = N). Second, (52) implies

lim
N→∞

Pr(ω = 1|k−i = mNN ;σN , N)

Pr(ω = 0|k−i = mNN ;σN , N)
∈ {0,∞} for mN = m′

N . (55)

Otherwise the inference from piv1 would be bounded as N → ∞. Then, for any N

large enough, we would have either kN = N , so that only piv1 would be relevant
for the agents’ best response, or, by (54), the inference from piv0 would also be
uniformly bounded. In either case, the indifferent types would be bounded away
from 0 and 1.40 Third, (52) implies limN→∞ q(0;σN) = limN→∞ q(1;σN). We set

q∗ = lim
N→∞

q(ω′;σN), and ∆n = q(1, σN)− q(0, σN) for any N.

39It suffices to derive a contradiction for any subsequence along which pN (0) and pN (1) con-
verge, since the values of pN (0) and pN (1) lie in the compact set [0, 1]. For simplicity of notation,
we replace the original sequence with such a subsequence.

40The indifferent types are pinned down by (11). Given (54) and (55), boundedness of the
indifferent type would follow from setting a = Pr(piv0|ω = 0; ηN , N), b = Pr(piv0|ω = 1; ηN , N),
c = Pr(piv1|ω = 0; ηN , N), d = Pr(piv1|ω = 1; ηN , N), and using the fact that for any
u, v, a, b, c, d > 0, we have min(ab ,

c
d ) ≤

au+cv
bu+dv ≤ max(ab ,

c
d ).
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Case 1: m1 ̸= q∗.41

In this case we derive a contradiction to (52). For γ > 0, let m+
N(γ) = q∗ + γ and

m−
N(γ) = q∗ − γ. For any sequence (mN)N∈N, when limN→∞mN ̸= q∗, the linear

approximation (19) applies, so that

(N − 1)
(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

))
≈ −(N − 1)(

1−mN

1− q∗
− mN

q∗
)∆N .

For mN = m′
N , the unbounded inference (55) implies

lim
N→∞

(N − 1)∆N ∈ {−∞,∞}.

We show case by case that

lim
N→∞

m′′
N = lim

N→∞
m′′′

N = q∗. (56)

First suppose limN→∞(N − 1)∆N = ∞. By definition, this implies q(0;σN) <

q(1;σN) for large N . Using the above linear approximation for mN = m±
N(γ), we

see that for any γ > 0,

lim
N→∞

Pr(ω = 1|k−i = ⌊mNN⌋;σN , N)

Pr(ω = 0|k−i = ⌊mNN⌋;σN , N)
= 0 for mN = m−

N(γ),

lim
N→∞

Pr(ω = 1|k−i = ⌊mNN⌋;σN , N)

Pr(ω = 0|k−i = ⌊mNN⌋;σN , N)
= ∞ for mN = m+

N(γ).

In particular, there exist both collective actions k for which the principal’s posterior
Pr(ω = 1|k;σN , N) exceeds 1

2
, and others for which it does not. Hence, k̄N ̸=

N for large N . The monotonicity of the posterior further implies limN→∞m′′
N ∈

(m+
N(γ),m

+
N(γ)) for all γ > 0, from which the claim (56) follows. The case in

which limN→∞(N − 1)∆N = −∞ holds is analogous. Since m1 ̸= q∗, the relevant
divergences differ in the limit, i.e.,

0 = lim
N→∞

KL
(
mN , q(ω;σN)

)
< lim

N→∞
KL
(
m1, q(ω;σN)

)
for mN = m′′

N and mN = m′′′
N . Thus,

lim
n→∞

Pr(k−i = mNN |ω, σN , N)

Pr(k−i = m′
NN |ω;σN , N)

= ∞

for all ω, mN = m′′
N , and mN = m′′′

N . Since the inference from each of m′′
N and m′′′

N is
bounded, by (54), this implies interior limit cutoffs (cf. (3) and (11)), contradicting
the initial assumption (52).

41In the main text we assert that this is a generic case. This is true because (52) implies
q∗ ∈ {F (0), F (1−), 1− F (0), 1− F (1−)}.
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Case 2: m1 = q∗.
This case can be broken down into several subcases, all of which are analogous;
we present only one. Consider an equilibrium sequence such that limN→∞ Pr(ω =

1|piv1;σN , N) = 1, and such that, for any N , a type chooses the 1-action if and only
if pi ≤ pN(s). Then, since pN(1) < pN(0) ∈ (0, 1), it holds that F (0) < q(1;σn) <

q(0;σN) < F (1−). Recall that pN(s) → 0 or pN(s) → 1 by the assumption (52).
If pN(s) → 1, then q∗ = F (1−). However, then limN→∞ Pr(ω = 1|piv1;σN , N) = 1

cannot hold. Thus, pN(s) → 0, which implies q∗ = F (0).
We now carefully examine the mean actions in each state,

q(ω′;σN)−m1 =
∑
s=0,1

Pr(si = s|ω = ω′)
(
F
(
pN(s)

)
− F (0)

)
.

Using simple algebra,42 we see that

Pr(si = 0|ω = 1)

Pr(si = 0|ω = 0)
≤ lim

N→∞

q(1;σN)−m1

q(0;σN)−m1

≤ Pr(si = 1|ω = 1)

Pr(si = 1|ω = 0)
,

which implies

lim
N→∞

q(ω′;σN)−m1

−∆N

∈ (0,∞) (57)

for all ω′.43 Using the approximation q(ω′;σN) ≈ q∗, we restate the quadratic
approximation (18) for m = mN and q = q(ω′;σN) as follows:

KL
(
mN , q(ω

′;σN)
)
≈

(
mN − q(ω′;σN)

)2
2q∗(1− q∗)

.

This approximation yields the following difference in divergences:

(N − 1)
(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

))
≈ (N − 1)

2q∗(1− q∗)

(
2mN∆N + q(0;σN)

2 − q(1;σN)
2
)

≈ (N − 1)

2q∗(1− q∗)

(
2
(
mN − q(0;σN)

)
∆N −∆2

N

)
.

For mN = m′
N , the unbounded inference (55) together with (57) then implies that

∆2
NN → ∞. Applying the central limit theorem and denoting by kN

N
the realized

42To be precise, we use the fact that for any u, v, a, b, c, d > 0, we have min (ab ,
c
d ) ≤

au+cv
bu+dv ≤

max (ab ,
c
d ).

43The inequalities hold for any subsequence along which q(1;σN )−m1

q(0;σN )−m1
converges. For simplicity

of notation, we replace the original sequence by such a subsequence.
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share of 1-actions among all N agents, we have

lim
N→∞

Pr
( ∣∣∣∣kNN − q(ω′;σN)

∣∣∣∣ < 1

4
∆N

∣∣∣ω = ω′;σN , N
)
= 1.

Letting mN = kN
N

, we see that almost surely

2
(
mN − q(0;σN)

)
∆N >

3

2
∆2

N if ω′ = 1,

2
(
mN − q(0;σN)

)
∆N <

1

2
∆2

N if ω′ = 0;

hence, almost surely

(N − 1)
(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

))
→

∞ if ω = 1,

−∞ if ω = 0.

Given (53), this means the principal learns the state almost surely: limN→∞ Pr(ω =

1|kN ;σN , N) = 1 if ω = 1 and limN→∞ Pr(ω = 1|kN ;σN , N) = 0 if ω = 0.

D Proof of Proposition 1: Omitted Parts

We verify that the modified best-response correspondence from the main text satis-
fies the requirements of Kakutani’s fixed point theorem—namely, that it has convex
and non-empty values and a closed graph.

First, the modified correspondence inherits certain properties of the best-response
correspondence: Its graph is the intersection of the graph of the best-response cor-
respondence, which is closed, with Σ× Σ, which is also closed (recall that Σ is the
closed set of candidate strategy profiles). In addition, the modified correspondence
is convex-valued since the monotonicity properties (i.e., x(k) ≥ x(k′) for all k′ > k

and (13)) are preserved by mixtures.
To establish the non-emptiness, we verify that the principal has a monotone best

response and that the agents have a best response satisfying (13). First, observe
that (13) implies that the principal’s posterior is weakly increasing in the number
of 1-actions. Thus, she has a monotone best response. Second, the monotonicity
of the principal’s strategy implies that the average effect of an additional 1-action
is positive in each state, i.e., U(0; η) ≥ 0 and U(1; η) ≥ 0. Given the best-response
characterization (11), this immediately implies that it is a best response for each
partisan to match his action to his type. Therefore there is generally a best response
satisfying the right condition of (13). A case analysis shows that in addition we can
meet the left condition of (13):
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• If U(0; η) > 0 and U(1; η) = 0, then all types except the type-1 partisans
choosing x = 0 is a best response with q(0;σ) = q(1;σ).

• If U(0; η) = 0 and U(1; η) > 0, then all types except the type-0 partisans
choosing x = 1 is a best response with q(0;σ) = q(1;σ).

• If U(1; η) > 0 and U(0; η) > 0, then (11) pins down the (essentially) unique
best response, which is given by the cutoffs 0 < pN(1) < pN(0) < 1, with
types choosing x = 1 if and only if pi ≥ pN(s). This best response satisfies
q(0;σ) < q(1;σ).

• If U(0; η) = U(1; η), then every agents’ strategy is a best response. In partic-
ular, there is a best response meeting both conditions of (13).
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Online Appendix

E Heterogeneous Ex-Post Preferences

We state an analog of Theorem 1 for a model in which the voters have a private
preference type and payoffs can depend on the state in a general way (Theorem 7).
Except for this additional type dimension, the baseline model from Section 1.1 is
unchanged.

Formally, an agent’s private type is now a prior pi ∈ [0, 1] and a pair ti =(
ti(0), ti(1)

)
∈ [−1, 1]2, describing the type’s constant marginal benefit from the

policy choice in the two states. Types ti are drawn from an absolutely continuous
distribution G and independently from priors, signals, and the state, and across
voters. Types for which pi

(
ti(0) − 1

2

)
< 0 and (1 − pi)

(
ti(1) − 1

2

)
> 0 prefer

x = 0 in ω = 0 and x = 1 in ω = 1. Types for which pi

(
ti(0) − 1

2

)
> 0 and

(1−pi)
(
ti(1)− 1

2

)
< 0 have opposed preferences and prefer x = 1 in ω = 0 and x = 0

in ω = 1. Types for which pi

(
ti(0)− 1

2

)
≤ 0 and (1−pi)

(
ti(1)− 1

2

)
≤ 0 weakly prefer

x = 0 in each state; types for which pi

(
ti(0)− 1

2

)
≥ 0 and (1− pi)

(
ti(1)− 1

2

)
≥ 0

weakly prefer x = 1. We denote the likelihood of these “partisans” by ρ(0) and ρ(1)

respectively. We assume that the mass of types for which pi

(
ti(0) − 1

2

)
= 0 and

(1− pi)
(
ti(1)− 1

2

)
= 0 is zero and ignore these types in the following, without loss

of generality. Note that ρ(0) and ρ(1) are then well-defined. As before, we maintain
ρ(0) > 0 and ρ(1) > 0, and the tie-breaking rule for the partisans. Finally, we
generalize the notion of an agents’ information structure π to mean the pair of a
signal and a type distribution.

Before stating the analogous theorem, we argue that the equilibrium set in this
generalized setting depends on the type distribution only through the function

Φ
(
U(0; η), U(1; η), l

)
= Pr

(
{(pi, ti) : pi

(
ti(1)−

1

2

)
U(1; η) ≤ (1− pi)

(1
2
− ti(0)

)
· l · U(0; η)}

)
for l := Pr(si=s|ω=0)

Pr(si=s|ω=1)
, via two observations:

First, equilibria are equivalently characterized by a principal’s strategy (k̄, x̃) and
a mean action pair q =

(
q(0), q(1)

)
so that (k̄, x̃) and q are best replies to (k̄, x̃)

and q. To make sense of this, note that, for any strategy profile η =
(
σ, (k̄, x̃)

)
,

the mean action pair q(σ) =
(
q(0;σ), q(1;σ)

)
pins down the set of principal’s
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best replies; q and (k̄, x̃) together pin down the average effects U(ω; η);44 and the
average effects are a sufficient statistic for the agents’ best reply, given that a type(
pi, ti(0), ti(1)

)
prefers the 1-action if and only if

pi

(
ti(1)−

1

2

) Pr(si = s|ω = 1)

Pri(si = s)
U(1; η)

−(1− pi)
(1
2
− ti(0)

) Pr(si = s|ω = 0)

Pri(si = s)
U(0; η) ≥ 0. (58)

In conclusion, q(σ) and (k̄, x̃) are a sufficient statistic for the best reply correspon-
dence, which yields the claimed equiibrium characterization.

Second, multiplying (58) by Pr(si=s)
Pr(si=s|ω=0)

shows the best reply correspondence’s
mean action pairs depend on the type distribution only through Φ. Consequently,
the same is true for the equilibrium set, as claimed.

For the statement of the analogous theorem, recall the definition of a monotone
type distribution from the main text; cf. (14).

Theorem 7. Any majority vote over excluding the maximal policy has a payoff
guarantee of 1 − ε across all agents’ information structures with monotone type
distributions and is robust optimal.

Proof. The proof structure follows that of Theorem 1’s proof in Section 1.7. The
previous proof combined Theorems 2 and 3, and Proposition 1. The identical proof
applies, given the analogs of these three results, which we will derive in the follow-
ing. Theorem 2 showed existence of an information structure and a corresponding
inefficient equilibrium sequence. It remains true since we only expanded the set of
feasible information structures. The analog of Proposition 1 is stated and proven
in Subsection E.1, and the analog of Theorem 3 is stated and proven in Subsection
E.2.

E.1 Analog of Proposition 1

We state Proposition 1’s analog for the setting with ex-post heterogeneous prefer-
ences.

Proposition 2. Take any non-constant, monotone process and any agents’ in-
formation structure with a monotone type distribution. For any N , there is an
equilibrium that satisfies the tie-breaking rule.

44Cf. (1) and (3).
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Proof. We mimic the original proof up to an adjustment of the argument showing
that the agents have a monotone best reply given any monotone strategy profile:
The proof identifies a set of candidate strategy profiles that ensure the partisans
tie-breaking rule and constructs equilibria as fixed points in this set.

The candidate strategy profiles are as follows. The agents use “monotone” strate-
gies σ, i.e., strategies under which the mean action is (weakly) higher in state 1 than
in state 0, and where the partisans choose their actions in accordance with their
types:

q(0;σ) ≤ q(1;σ), and σ(y, s) = y for all s ∈ [0, 1] and all y ∈ {0, 1}. (59)

The principal mixes over “monotone” strategies, defined as those in which the policy
choice x = x(k) is weakly increasing in the number of observed 1-actions k. That
is, x(k) ≥ x(k′) for all k, k′ ∈ {0, . . . , N} with k′ > k.

For the fixed-point argument, we consider a modification of the best-response
correspondence in which the set values are truncated to the set of candidate strategy
profiles, denoted by Σ. We verify that this modification meets the requirements of
Kakutani’s fixed point theorem.

First, the modified correspondence inherits certain properties of the best-response
correspondence: Its graph is the intersection of the graph of the best-response cor-
respondence, which is closed, with Σ× Σ, which is also closed (recall that Σ is the
closed set of candidate strategy profiles). In addition, the modified correspondence
is convex-valued since the monotonicity properties (i.e., x(k) ≥ x(k′) for all k′ > k

and (59)) are preserved by mixtures.
To establish the non-emptiness, we verify that the principal has a monotone best

response and that the agents have a best response satisfying (59). First, observe
that (59) implies that the principal’s posterior is weakly increasing in the number
of 1-actions. Thus, she has a monotone best response. Second, the monotonicity
of the principal’s strategy implies that the average effect of an additional 1-action
is positive in each state, i.e., U(0; η) ≥ 0 and U(1; η) ≥ 0. Given the best-response
characterization (58), this immediately implies that it is a best response for each
partisan to match his action to his type. Therefore there is generally a best response
satisfying the right condition of (59). A case analysis shows that in addition we can
meet the left condition of (59):

• If U(0; η) > 0 and U(1; η) = 0, all types for which pi

(
ti(0)− 1

2

)
< 0 choosing

x = 0, all types for which pi

(
ti(0)− 1

2

)
> 0 choosing x = 1, and all partisans

choosing their weak preference is a best response with q(0;σ) = q(1;σ).
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• If U(0; η) = 0 and U(1; η) > 0, all types for which (1 − pi)
(
ti(1) − 1

2

)
< 0

choosing x = 0, all types for which (1−pi)
(
ti(1)− 1

2

)
> 0 choosing x = 1, and

all partisans choosing their weak preference is a best response with q(0;σ) =

q(1;σ).

• If U(1; η) > 0 and U(0; η) > 0, all partisans choosing their weak preference,
and all non-partisans choosing according to (58) is a best response satisfying
q(0;σ) < q(1;σ), given the type distribution’s monotonicity.

• If U(0; η) = U(1; η), all agents’ strategies are a best response. In particular,
there is a best response meeting both conditions of (59), including q(σ; 0) ≤
q(σ; 1).

E.2 Analog of Theorem 3

Theorem 3’s statement about information aggregation holds in this setting, with
the generalized notion of the agents’ information structures as pairs of signal and
type distributions.

Theorem 8. Consider any monotone process of partial commitments with a single
cutoff and any agents’ information structure with a monotone type distribution.
Information aggregates in all equilibrium sequences if and only if the process has no
balance and maxP (0) < maxP (1).

The proof is below. Some parts of it are verbatim to the original proof, and
therefore not repeated, only highlighted.

Proof. To prove Theorem 3’s statement in the generalized setting, the first three
proof parts (the arguments in the main text, Claim 5, and Claim 6) are essentially
identical and not repeated here.

They establish the necessity of the theorem’s conditions for information aggre-
gation. They also show that any equilibrium η of a process satisfying the conditions
is (a) informative, (b) either U(ω′; η) > 0 for all ω ∈ {0, 1} or U(ω′; η) < 0 for all
ω ∈ {0, 1}. Thus, U(0;ηN )

U(1;ηN )
∈ (0,∞).

The last part of Theorem 3’s proof, Claim 7, starts from U(0;ηN )
U(1;ηN )

∈ (0,∞) and
establishes that any equilibrium sequence of a process satisfying the conditions
aggregates information. We prove the following analog of Claim 7:
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Claim 8. Take any monotone process with a single cutoff and no balance for which
maxP (0) < maxP (1). Take any agents’ information structure with a monotone
type distribution. Any equilibrium sequence aggregates information.

The detailed version of the proof is below. Here is a quick summary: The pre-
vious proof established interior limits for the indifferent agent types. We establish
the equivalent claim that limN→∞

U(0;ηN )
U(1;ηN )

∈ (0,∞); cf. (11). This observation yields
strictly different mean actions, i.e. q(0;σ) ̸= q(1;σ) whenever the type distribution
is monotone, cf. (14). Since the realized collective action is almost surely close to
the mean action in each state, the principal learns the state from observing it. That
is, information aggregates.

Proof. Take any equilibrium sequence (ηN)N∈N of a process meeting the conditions
in the claim.

We just argued in the section above that U(0;ηN )
U(1;ηN )

∈ (0,∞) for all N and that
limN→∞

U(0;ηN )
U(1;ηN )

∈ (0,∞) implies information aggregation. In the following, we
consider the counter-scenario, where45

lim
N→∞

U(0; ηN)

U(1; ηN)
∈ {0,∞}. (60)

The arguments are based on a detailed analysis of point events for the realized num-
ber k−i of 1-actions of the other agents: For any sequence (mN)N∈N with mNN ∈ N
for all N , we apply (16) to obtain

Pr
(
k−i = mNN |ω = ω′;σN , N

)
= exp

(
− (N − 1)KL(mN , q(ω

′, σN)) + o(N)
)
,

and the left equation in (17) to obtain

Pr(ω = 1|k−i = mNN ;σN , N)

Pr(ω = 0|k−i = mNN ;σN , N)
=

Pr(ω = 1)

1− Pr(ω = 1)

· exp
(
(N − 1)

(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

)))
. (61)

Specifically, we will consider the sequences given by m′
N = ⌊m1N⌋

N
, m′′

N = k̄N
N

, and
m′′′

N = k̄N+1
N

, with k̄N being the unique number satisfying (1). These sequences
correspond to the pivotal events piv1, piv0,k̄N , and piv0,k̄N+1. We make three pre-

45It is sufficient to derive a contradiction for any subsequence where U(0;ηN )
U(1;ηN ) is converging to 0

in the extended reals, and for any subsequence where U(0;ηN )
U(1;ηN ) is converging to ∞. We identify the

subsequence with the original sequence to omit the subsequence notation.
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liminary observations: First, as long as kN ̸= N for all N large enough, we have

lim
N→∞

Pr(ω = 1|k−i = mNN ;σN , N)

Pr(ω = 0|k−i = mNN ;σN , N)
∈ (κ,

1

κ
) for mN ∈ {m′′

N ,m
′′′
N}, (62)

for some κ > 0, by the defining property (1) of k̄N (whenever we apply (54), we will
rule out the case kN = N). Second, (60) implies

lim
N→∞

Pr(ω = 1|k−i = mNN ;σN , N)

Pr(ω = 0|k−i = mNN ;σN , N)
∈ {0,∞} for mN = m′

N . (63)

Otherwise the inference from piv1 would be bounded as N → ∞. Then, for any N

large enough, we would have either kN = N , so that only piv1 would be relevant
for the agents’ best response, or, by (62), the inference from piv0 would also be
uniformly bounded. In either case, the ratio U(0;ηN )

U(1;ηN )
would be bounded away from

0 and 1.46 Third, (60) implies limN→∞ q(0;σN) = limN→∞ q(1;σN). We set

q∗ = lim
N→∞

q(ω′;σN), and ∆n = q(1, σN)− q(0, σN) for any N.

Case 1: m1 ̸= q∗.47

In this case we derive a contradiction to (60). For γ > 0, let m+
N(γ) = q∗ + γ and

m−
N(γ) = q∗ − γ. For any sequence (mN)N∈N, when limN→∞mN ̸= q∗, the linear

approximation (19) applies, so that

(N − 1)
(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

))
≈ −(N − 1)(

1−mN

1− q∗
− mN

q∗
)∆N .

For mN = m′
N , the unbounded inference (63) implies

lim
N→∞

(N − 1)∆N ∈ {−∞,∞}.

We show case by case that

lim
N→∞

m′′
N = lim

N→∞
m′′′

N = q∗. (64)

First suppose limN→∞(N − 1)∆N = ∞. By definition, this implies q(0;σN) <

q(1;σN) for large N . Using the above linear approximation for mN = m±
N(γ), we

46The average effect ratio can be expressed via (11). Given (62) and (63), boundedness of
the ratio would follow from setting a = Pr(piv0|ω = 0; ηN , N), b = Pr(piv0|ω = 1; ηN , N), c =
Pr(piv1|ω = 0; ηN , N), d = Pr(piv1|ω = 1; ηN , N), and using the fact that for any u, v, a, b, c, d > 0,
we have min(ab ,

c
d ) ≤

au+cv
bu+dv ≤ max(ab ,

c
d ).

47In the main text we assert that this is a generic case. This is true because (52) implies
q∗ ∈ {F (0), F (1−), 1− F (0), 1− F (1−)}.
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see that for any γ > 0,

lim
N→∞

Pr(ω = 1|k−i = ⌊mNN⌋;σN , N)

Pr(ω = 0|k−i = ⌊mNN⌋;σN , N)
= 0 for mN = m−

N(γ),

lim
N→∞

Pr(ω = 1|k−i = ⌊mNN⌋;σN , N)

Pr(ω = 0|k−i = ⌊mNN⌋;σN , N)
= ∞ for mN = m+

N(γ).

In particular, there exist both collective actions k for which the principal’s posterior
Pr(ω = 1|k;σN , N) exceeds 1

2
, and others for which it does not. Hence, k̄N ̸=

N for large N . The monotonicity of the posterior further implies limN→∞m′′
N ∈

(m+
N(γ),m

+
N(γ)) for all γ > 0, from which the claim (64) follows. The case in

which limN→∞(N − 1)∆N = −∞ holds is analogous. Since m1 ̸= q∗, the relevant
divergences differ in the limit, i.e.,

0 = lim
N→∞

KL
(
mN , q(ω;σN)

)
< lim

N→∞
KL
(
m1, q(ω;σN)

)
for mN = m′′

N and mN = m′′′
N . Thus,

lim
n→∞

Pr(k−i = mNN |ω, σN , N)

Pr(k−i = m′
NN |ω;σN , N)

= ∞

for all ω, mN = m′′
N , and mN = m′′′

N . Since the inference from each of m′′
N and m′′′

N

is bounded, by (62), this implies interior limits, limN→∞
U(0;ηN )
U(1;ηN )

∈ (0,∞) (cf. (3)
and (11)), contradicting the initial assumption (60).

Case 2: m1 = q∗.
This case can be broken down into several subcases, all of which are analogous;
we present only one. Consider an equilibrium sequence such that limN→∞ Pr(ω =

1|piv1;σN , N) = 1 and such that, for any N , U(1; ηN) < 0. In the previous section,
we remarked that the same proofs as before establishes U(0;ηN )

U(1;ηn)
∈ (0,∞), so that (58)

pins down a unique the agents’ best response. Recall that ρ(0) is the likelihood of an
agent being a 0-partisan and ρ(1) the likelihood of an agent being a 1-partisan. We
see that U(1; ηn) < 0 and monotonicity imply ρ(0) < q(1;σn) < q(0;σN) < 1−ρ(1).
Recall that U(0;ηN )

U(1;ηN )
→ 0 or U(0;ηN )

U(1;ηN )
→ 1 by assumption (60). If U(0;ηN )

U(1;ηN )
→ 1, then

q∗ = 1 − ρ(1). However, then limN→∞ Pr(ω = 1|piv1;σN , N) = 1 cannot hold.
Thus, U(0;ηN )

U(1;ηN )
→ 0, which implies q∗ = ρ(0).

We now carefully examine the mean actions in each state,

q(ω′;σN)−m1 =
∑
s=0,1

Pr(si = s|ω = ω′)
(
Φ
(
z1(s), z2

)
− ρ(0)

)
,

with z1(s) =
U(0;ηN ) Pr(si=s|ω=0)
U(1;ηn) Pr(si=s|ω=1)

and Z2 the sign of U(1, η). Using simple algebra,48

48To be precise, we use the fact that for any u, v, a, b, c, d > 0, we have min (ab ,
c
d ) ≤

au+cv
bu+dv ≤
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we see that

Pr(si = 0|ω = 1)

Pr(si = 0|ω = 0)
≤ lim

N→∞

q(1;σN)−m1

q(0;σN)−m1

≤ Pr(si = 1|ω = 1)

Pr(si = 1|ω = 0)
,

which implies

lim
N→∞

q(ω′;σN)−m1

−∆N

∈ (0,∞) (65)

for all ω′.49 Using the approximation q(ω′;σN) ≈ q∗, we restate the quadratic
approximation (18) for m = mN and q = q(ω′;σN) as follows:

KL
(
mN , q(ω

′;σN)
)
≈

(
mN − q(ω′;σN)

)2
2q∗(1− q∗)

.

This approximation yields the following difference in divergences:

(N − 1)
(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

))
≈ (N − 1)

2q∗(1− q∗)

(
2mN∆N + q(0;σN)

2 − q(1;σN)
2
)

≈ (N − 1)

2q∗(1− q∗)

(
2
(
mN − q(0;σN)

)
∆N −∆2

N

)
.

For mN = m′
N , the unbounded inference (63) together with (65) then implies that

∆2
NN → ∞. Applying the central limit theorem and denoting by kN

N
the realized

share of 1-actions among all N agents, we have

lim
N→∞

Pr
( ∣∣∣∣kNN − q(ω′;σN)

∣∣∣∣ < 1

4
∆N

∣∣∣ω = ω′;σN , N
)
= 1.

Letting mN = kN
N

, we see that almost surely

2
(
mN − q(0;σN)

)
∆N >

3

2
∆2

N if ω′ = 1,

2
(
mN − q(0;σN)

)
∆N <

1

2
∆2

N if ω′ = 0;

hence, almost surely

(N − 1)
(
KL
(
mN , q(0, σN)

)
−KL

(
mN , q(1, σN)

))
→

∞ if ω = 1,

−∞ if ω = 0.

max (ab ,
c
d ).

49The inequalities hold for any subsequence along which q(1;σN )−m1

q(0;σN )−m1
converges. For simplicity

of notation, we replace the original sequence by such a subsequence.
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Given (61), this means the principal learns the state almost surely: limN→∞ Pr(ω =

1|kN ;σN , N) = 1 if ω = 1 and limN→∞ Pr(ω = 1|kN ;σN , N) = 0 if ω = 0.

E.3 Agent-Optimal Processes

We provide sufficient conditions for the majority voting over exclusion of the max-
imal policy (the processes defined by (4)) to be agent-optimal processes. That is,
they maximize the agents’ payoff guarantee. By this we mean the percentage of the
full-information payoff achieved in the worst-case scenario and as N → ∞, by a
social planner who has full information about the state and maximizes the agent’s
ex-ante welfare∫ 1

pi=0

piEG

(
ti(1)

)
+ (1− pi)EG

(
ti(0)

)
dF (pi).

The first condition is

0 ≤ EG

(
ti(0)

)
<

1

2
, and 1 ≥ EG

(
ti(1)

)
>

1

2

and means that, when the state is known, policies are ranked in the same way
whether considering the principal’s or the agents’ ex-ante welfare (lower policies are
strictly preferred in ω = 0 and higher ones in ω = 1). This means, the agents’ full
information payoff is

EF (pi)
(
EG

(
ti(1)

)
− 1

2

)
and the agents’ payoff guarantee is

Ĝ(P ) := inf
(ηN )N∈N,π

(
lim

N→∞
inf E(x | ω = 1; ηN)−

EF (1− pi)
(

1
2
− EG

(
ti(0)

))
EF (pi)

(
EG

(
ti(1)

)
− 1

2

) E(x | ω = 0; ηN)
)

It differs from the principal’s payoff guarantee simply by replacing Pr(ω = 0) with
EF (1− pi)

(
1
2
− EG

(
ti(0)

))
and Pr(ω = 1) with EF (pi)

(
EG

(
ti(0)

)
− 1

2

)
.

The second condition is

1− EF (pi)

EF (pi)
·

1
2
− E

(
ti(0)

)
E
(
ti(1)

)
− 1

2

≥ ε. (66)

and the relevant implication is that choosing x = 1 in both states yields an agent’s
ex-ante payoff smaller than 1− ε times the full-information payoff.50

50The payoff from choosing x = 1 in both states divided by the full-information payoff is
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Given the two conditions, mimicking Section 1.7’s proof of Theorem 1 shows
that the processes (4) maximize the agents’ payoff guarantee.

F Proof of Theorem 5

The proof structure follows that of Theorem 1’s proof in Section 1.7. The previous
proof combined Theorems 2 and 3, and Proposition 1. The identical proof applies,
given the analogs of these three results, which we will derive in the following.

Before doing so, we provide some auxiliary results.

Claim 9. Let c′(x)
b′(x)

be weakly decreasing in x.

1. If u(x, p) = u(x′, p) for some p ∈ [0, 1] and x < x′, then

i. u(x′′, p′) ≤ (<)u(x′′′, p′) for any p′ ≥ (>)p, x′′′ ≥ x′, and x ≤ x′′ < x′′′.

ii. u(x′′, p′) ≥ (>)u(x′′′, p′) for any p′ ≤ (<)p, x′′ ≤ x, and x′′ < x′′′ ≤ x′.

2. If u(x, p) < u(x′, p) for some p ∈ [0, 1] and x < x′, then, u(x′′, p′) < u(x′′′, p′)

for any p′ ≥ p, x′′′ ≥ x′, and x ≤ x′′ < x′′′.

3. If u(x, p) > u(x′, p) for some p ∈ [0, 1] and x < x′, then, u(x′′, p′) > u(x′′′, p′)

for any p′ ≤ p, x′′ ≤ x, and x′′ < x′′′ ≤ x′.

Proof. The first item: By definition, u(y, p) = u(y, 0)(1 − p) + u(y, 1)p for all y ∈
P , p ∈ [0, 1]. Since u(y, 0) > u(y′, 0) and u(y, 1) < u(y′, 1) for all y < y′, the equality
u(x, p) = u(x′, p) implies

u(x, p′) < u(x′, p′) for p′ > p,

u(x, p′) > u(x′, p′) for p′ < p.

Then, the first claim follows from the single-basin property of the preferences
u(y, p′). The second and third item: The inequality u(x, p) < u(x′, p) implies
u(x, p′) < u(x′, p′) for any p′ ≥ p. The second claim follows again from the single-
basin property. The inequality u(x, p) > u(x′, p) implies u(x, p′) > u(x′, p′) for any
p′ ≤ p. The third claim follows again from the single-basin property.

Based on Claim 9, we establish a critical “monotone comparative statics” result.
We show that principal has a monotone best reply to any monotone strategy profile;
see Section 1.6 for the definition of monotone strategies:

1−
EF (1−pi)

(
1
2−EG

(
ti(0)

))
EF (pi)

(
EG

(
ti(1)

)
− 1

2

)) , which is smaller than 1− ε if (66) holds.
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Take any monotone process P and any monotone strategy profile ηN . Note this
implies that maxP (m) and minP (m) and Pr(ω = 1|k; ηN) are all weakly increasing.
Denote p(k) = Pr(ω = 1|k; ηN), x(k) = minP ( k

N
), and x′(k) = maxP ( k

N
). An

application of Claim 9 yields: Either u
(
x(k), p(k)

)
> u

(
x′(k), p(k)

)
for all k ∈

{0, . . . , N}, or there is k̄ ∈ {0, . . . , N} so that u
(
x(k), p(k)

)
> u

(
x′(k), p(k)

)
for all k < k̄ and u

(
x(k), p(k)

)
≤ u

(
x′(k), p(k)

)
for all k ≥ k̄. In any case,

this means the principal has a best reply where he chooses x(k) if k is so that
u
(
x(k), p(k)

)
> u

(
x′(k), p(k)

)
and x′(k) otherwise.

We note the following cut-off property that will be useful for proving an analog of
Theorem 2: When the agents’ strategy is informative, i.e., when q(0;σN) < q(1;σN),
the posteriors p(k) are strictly increasing in k. Thus, when there is k so that
u
(
x(k), p(k)

)
= u

(
x′(k), p(k)

)
, the lemma implies strict preferences between x(k′)

and x′(k′) for any k′ ̸= k. Thus, the principal has two cut-off best replies, one where
she chooses x′(k′) if k′ < k and x(k′) otherwise and one where she chooses x′(k′) if
k′ ≤ k and x(k′) otherwise.

Now, we sketch the proof of the analogs of Theorems 2 and 3 and Proposition
1.

Theorem 9. (Analog of Theorem 3)
Let c′(x)

b′(x)
be constant in x or strictly decreasing in x and Pr(ω) > p̄. Then, for

any process (4) and any agents’ information structure, information aggregates in
all equilibrium sequences.

Proof. In the main text, we argued that, for all monotone equilibria of the processes
(4), the average effect U(ω; η) is strictly positive in each state, and thus, that there
are unique interior cutoff types pN(s) ∈ (0, 1). Based on that, one proves the claim
of information aggregation by mimicking Claim 7’s proof verbatim.

Analog of Theorem 2. Theorem 2 shows existence of an information structure
and a corresponding inefficient equilibrium sequence. The theorem’s conclusion
remains true and the identical proof applies, given the above observation about the
existence of the two cut-off best replies.

Analog of Proposition 1. To prove Proposition 1, we constructed equilibria
in monotone strategies. The proposition’s conclusion remains true, in the setting
with heterogeneous ex-post preferences, and the identical proof applies, with one
adjustment: As before, we consider a modified best-response correspondence: It
maps any monotone strategy profile to the intersection of its set of best-response

69



profiles with the set Σ of monotone strategy profiles. The proof then verifies that
the requirements of Kakutani’s fixed point theorem are met. As before, the modified
best response has a closed graph—the graph is the intersection of the best-response
correspondence’s closed graph with Σ×Σ, which is also closed; it is convex-valued
since the monotonicity of the strategies is preserved by mixtures. Finally, the
argument showing it is non-empty has to be adjusted. For this, we have to argue
that all players have a monotone best reply. For the principal, we did so above
already. For the agents, any best reply is monotone as a consequence of U(ω′; η) > 0

for ω′ = 0, 1 and the best response characterization (11).

G Existence of Efficient Equilibria for Processes with

a Single Cutoff

Theorem 10 demonstrates that many processes with a single cutoff m1 ∈ (0, 1) gen-
erally have efficient equilibrium sequences—i.e., the equilibrium sequence achieves
full-information payoffs, as N → ∞. The following conditions are sufficient: The
processes have increasing minimum and maximum policies and do not exclude the
ex-post optimal policies.

Theorem 10. Take any process with a single cutoff. If minP (0) < minP (1),
maxP (0) < maxP (1), minP (0) = 0, and maxP (1) = 1, given any agents’ infor-
mation structure, there exists an equilibrium sequence (ηN)N∈N for which

lim
N→∞

Pr(x = ω|ηN , N) = 1.

Proof. The equilibrium strategies are found among a parametric set of candidate
strategies σL where an agent with signal s ∈ {0, 1} chooses ai = 1 if and only if
pi ≥ pL(s) with pL(s) solving

L =
Pri(ω = 1 | pi = pL(s), si = s)

Pri(ω = 0 | pi = pL(s), si = s)
.

Note that pL(s) is increasing in L. Hence, the mean action in each state, q(ω;σL)

is strictly decreasing in L. We consider a compact set of parameters L ∈ [
¯
LN , L̄N ],

with the parameter bounds implicitly given by the equations

q(0;σ
¯
LN

) =
⌊m1N⌋

N
, and (67)

q(1;σL̄N
) =

⌊m1N⌋
N

. (68)
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A preliminary result prepares the formal fixed-point argument that constructs
the equilibrium sequence.

Claim 10. Take any sequence (LN)N∈N with LN ∈ [
¯
LN , L̄N ] for all N ∈ N. The

sequence of the cutoffs (k̄N)N∈N of the principal’s best response to (σLN
)N∈N satisfies

limN→∞KL
(

k̄N
N
, q(0;σLN

)
)
= limN→∞ KL

(
k̄N
N
, q(1;σLN

)
)
> 0.

Proof. The bound LN ∈ [
¯
LN , L̄N ] implies 0 < limN→∞ q(0;σLN

) < limN→∞ q(1;σLN
) <

1. An application of the law of large numbers thus shows that information aggre-
gates. In particular, this rules out the boundary case k̄N = N because the princi-
pal’s posterior crosses her indifference belief 1

2
at some collective action k̄ + 1 with

limN→∞ q(0;σLN
) < limN→∞

k̄N
N

< limN→∞ q(1;σLN
).

Now, we suppose that

lim
N→∞

KL
( k̄

N
, q(0;σLN

)
)
̸= lim

N→∞
KL
( k̄

N
, q(1;σLN

)
)

(69)

and derive a contradiction. Given (69), an application of (16) yields limN→∞ Pr(ω =

1|k̄;σLN
, N) ∈ {0, 1}, but this contradicts the minimality of k̄ + 1.

Finally, limN→∞ KL
(

k̄N
N
, q(0;σLN

)
)
= limN→∞KL

(
k̄N
N
, q(1;σLN

)
)

and limN→∞ q(0;σLN
) <

q(1;σLN
) together imply limN→∞KL

(
k̄N
N
, q(ω;σLN

)
)
> 0 for ω ∈ {0, 1}.

We describe the fixed-point correspondence f . It is a mapping on the parameter
space [

¯
LN , L̄N ]: Take any L ∈ [

¯
L, L̄], any principal’s best reply (k̄, x̃) to σL, and the

strategy profile η =
(
σL, (k̄, x̃)

)
. We claim that U(ω′; η) > 0 for any ω′ and large

enough N , and prove this momentarily. Given (11), the agents’ best reply to η is
then the strategy σL′ with L′ = U(0;η)

U(1;η)
∈ (0,∞). We consider the correspondence f

that maps L to the set consisting of the projections min
(
max (

¯
LN , L

′), L̄N

)
of all

such best-replies L′.
The proof of the claim U(ω′; η) > 0 relies on our assumptions for the pro-

cess. Recall from Claim 10’s proof that 0 < limN→∞ q(0;σLN
) < limN→∞

k̄N
N

<

limN→∞ q(1;σLN
) < 1. This implies, (a) all collective actions k ∈ {0, . . . , N} are on

path, (b) the principal’s posterior Pr(ω = 1|k; ηN , N) is weakly increasing, when N

is large enough. The assumptions minP (0) < minP (1) and maxP (0) < maxP (1)

then imply that (c) under any principal’s best reply, the choice x(k) is weakly
increasing in k, and (d) x(k̄) < x(k̄+2). Together (a), (c), and (d) imply the claim.

The fixed-point argument: Given the defining equation (67) for
¯
LN , for any N

and LN =
¯
LN ,

KL
(⌊m1N⌋

N
, q(0;σLN

)
)
= 0 < KL

(⌊m1N⌋
N

, q(1;σLN
)
)
.
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Claim 10 together with the expressions (21) and (22) for the pivotal likelihoods
implies limN→∞ Pr

(
ω = 1|piv; σL, (k̄N , x̃N), N

)
= 0 for any sequence of principal’s

best replies (k̄N , x̃N) to σLN
. Consequently,

L′
N <

¯
LN for all L′

N ∈ f(
¯
LN) (70)

and N large enough. Conversely, for L = L̄N ,

KL
(⌊m1N⌋

N
, q(1;σL)

)
= 0 < KL

(⌊m1N⌋
N

, q(0;σL)
)
.

Claim 10 together with (21) and (22) implies limN→∞ Pr
(
ω = 1|piv;σL, (k̄N , x̃N), N

)
=

1 for any sequence of principal’s best replies (k̄N , x̃N) to σL. Consequently,

L′
N < L̄N for all L′

N ∈ f(L̄N) (71)

and N large enough. Finally, an application of Kakutani’s fixed point theorem
yields a sequence of fixed points

¯
LN < L∗

N < L̄N for which L∗
N ∈ f(L∗

N).
Finally, we argue that any sequence of fixed points corresponds to an equilibrium

sequence that achieves the full-information payoffs. First, given (70) and (71),
a continuity argument implies limN→∞

¯
LN < limN→∞ L∗

N < limN→∞ L̄N . This
means that any fixed point L∗

N is interior when N is sufficiently large so that the
corresponding sequence σLN

is a sequence of equilibrium strategies. Further, it
implies

lim
N→∞

q(0;σL∗
N
) < m1 < lim

N→∞
q(1;σL∗

N
). (72)

Second, given (72), information aggregates and the principal’s choice is x = minP (0) =

0 in ω = 0 and x = maxP (1) = 1 in ω = 1, with probability converging to 1. We
conclude that the equilibrium sequence achieves the full-information payoffs.

H Proof of Theorem 6

For any large enough N , we construct an equilibrium strategy σN with the mean
action exceeding the highest cutoff in each state,

mR + γ < q(0;σN) < q(1;σN), (73)

for some γ > 0. An application of the law of large numbers then yields the claim.
The equilibrium strategy is found among a parametric set of candidate strategies

σL where an agent with signal s ∈ {0, 1} chooses ai = 1 if and only if pi ≥ pL(s)
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with pL(s) solving

L =
Pri(ω = 1 | pi = pL(s), si = s)

Pri(ω = 0 | pi = pL(s), si = s)
.

We will consider a compact set of parameters L ∈ [
¯
L, L̄] with the parameters

given by

¯
L =

Pr(ω = 0)

Pr(ω = 1)

Pr(si = 1|ω = 0)

Pr(si = 1|ω = 1)
<

Pr(ω = 0)

Pr(ω = 1)

Pr(si = 1|ω = 1)

Pr(si = 1|ω = 0)
= L̄. (74)

These bounds guarantee that

Pr
(
ω = 0|piv0;σL, (k̄, x̃), N

)
Pr
(
ω = 1|piv0;σL, [k̄, x̃), N

) ∈ [
¯
L, L̄],

for any principal’s best reponse (k̄, x̃) to σL which one verifies from its characteri-
zation (1).

A preliminary result prepares the fixed-point argument that we will use to con-
struct the equilibria.

Claim 11. There is q̄ > mR so that, for any distribution of the agent’s priors with
1−F (p̄) > q̄, there are N̄ and δ̄ > 0 for which the following holds: For any N ≥ N̄ ,
and σL with L ∈ [

¯
L− δ̄, L̄+ δ̄], and any principal’s best response (k̄N , x̃N) to σL, the

agents’ best response to σL and (k̄N , x̃N) is a strategy σL′ with L′ ∈ [
¯
L− δ̄, L̄+ δ̄].

Proof. Throughout the proof, we fix an information structure with 1−F (p̄) > q̄ for
some q̄ > mR.

Step 1. There is δ > 0 so that q(σL;ω) > q̄ for all ω ∈ {0, 1} and L ∈ [
¯
L−δ, L̄+δ].

Take any L ∈ [
¯
L− δ, L̄+ δ]. Since the cutoffs pL(s) are increasing in L,

pL(s) ≤ pL̄+δ(s) for all s ∈ {0, 1}.

In turn, since q(0;σL) is strictly decreasing in pL(s) and since pL(1) < pL(0),

q(σL;ω) ≥ 1− F
(
pL̄+δ(0)

)
for all ω ∈ {0, 1}.

Note that the definitions (15) and (74) are such that pL̄(0) = p̄. Given 1−F (p̄) > q̄,
there is δ > 0 so that 1− F (pL̄+δ) > q̄, and thus q(σL;ω) > q̄ for all ω ∈ {0, 1}, as
claimed.
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Step 2. Fix L ∈ [
¯
L, L̄]. For any sequence of principal’s best responses (k̄N , x̃N) to

σL,

q(0;σL) < lim
N→∞

k̄N
N

< q(1;σL) (75)

First, q(0;σL) < q(1;σL) follows from the definition of σL, the full support
of the prior distribution and the different likelihood ratios of the private signals
in the two states. Second, suppose the inner inequalities do not hold. Then,
limN→∞ KL

(
k̄N
N
, q(0;σL)

)
̸= limN→∞KL

(
k̄N
N
, q(1;σL)

)
, so that (16) would imply

limN→∞ Pr(ω = 1|k̄N ;σL, N) ∈ {0, 1}. But Pr(ω = 1|k̄N ;σL, N) is close to the prin-
cipal’s prior, given (1) and since a single agent’s action is boundedly informative
about the state. We arrive at a contradiction.

Step 3. There is q̄ ∈
(
mR, F (1−)

)
so that when q(0;σL) ≥ q̄, then

KL
(
mR, q(ω;σL)

)
> KL

(
m0, q(0;σL)

)
for any ω ∈ {0, 1}. (76)

where m0 = limN→∞
k̄N
N

is the limit of the principal’s best reply cutoff k̄N given by
(1).

For q(0;σL) ≈ F (1−), the ordering (75) implies KL
(
m0, q(σL;ω)

)
≈ 0 for ω ∈

{0, 1}. However, KL(mR, q(0;σL)) > 0 since mR < F (1−). Given the continuity of
the Kullback–Leibler divergence, (76) holds if q(0;σL) ≥ q̄ for some large enough
q̄ ∈

(
mR, F (1−)

)
.

Step 4. Take δ > 0 from Step 1 and q̄ from Step 3. There is N̄ ∈ N so that, for
any N ≥ N̄ , the following holds : For any L ∈ [

¯
L − δ, L̄ + δ] and any principal’s

best response (k̄N , x̃N), the agents’ best response to σL and (k̄N , x̃N) is a strategy
σL′ with L′ ∈ [

¯
L− δ, L̄+ δ].

Take any L ∈ [
¯
L − δ, L̄ + δ]. Our assumptions imply that (76) holds. The key

implication of (76) is that the agents’ best response is dominated by the incentive
to influence the principal’s policy preference, i.e.,

lim
N→∞

Pr(piv0|piv; σL, N) = 1 (77)

This implication directly follows from the expression for the likelihood of the pivotal
events in terms of the Kullback–Leibler divergence, (21) and (22).

Given (77), for any sequence of principal’s best responses (k̄N , x̃N) to σL, the
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characterization (11) of the agents’ best response implies it is a strategy σL′
N

with

L′
N →

Pr
(
ω = 0|piv0;σL, (k̄N , x̃N), N

)
Pr
(
ω = 1|piv0;σL, (k̄N , x̃N), N

) .
a N → ∞. Since the bounds

¯
L and L̄ were constructed to contain the posterior

likelihood ratio conditional on piv0, we conclude there is N̄ so that for any N ≥ N̄ ,

¯
L− δ ≤ L′

N ≤ L̄+ δ.

Claim 11 establishes a correspondence from L ∈ [
¯
L − δ̄, L̄ + δ̄] to subsets of

L′ ∈ [
¯
L, L̄]. This correspondence is the mapping that takes σL, sends it to all

principal’s best responses, and subsequently to all agents’ best responses σL′ (to
σL and a given principal’s best response). One verifies that this correspondence
has a closed graph, and non-empty, compact, convex images. An application of
Kakutani’s fixed point theorem implies a fixed point L∗

N for any N ≥ N̄ . The
corresponding σL∗

N
is an equilibrium strategy and satisfies q̄ < q(0;σL∗

N
) < q(1;σL∗

N
);

cf. Step 1. Since mR < q̄, there is γ > 0 so that mR + γ < q̄ holds. We conclude
that we constructed an equilibrium with the desired property (73), which finishes
the proof of Theorem 6.

I Interior Mean Actions Imply Trembling-hand Per-

fection

We show that any equilibrium η = (σ, x̃, k) with interior mean actions, q(ω;σ) ∈
(0, 1) for ω ∈ {0, 1}, is trembling-hand perfect (Selten, 1988). By definition, η

is trembling-hand perfect if there exists a sequence of completely mixed strategy
profiles (ηk)k∈N with agent strategies (σk)k∈N and the following properties:

(i) (ηk)k∈N converges to η,

(ii) η is a best reply to ηk for all k.

It is easy to verify that interior mean actions imply that there is a completely mixed
sequence (ηk)k∈N for which (i) and

(iii) q(ω;σk) = q(ω;σ) and U(ω; ηk) = U(ω; η) for all ω ∈ {0, 1},

hold. Since the vector
(
q(ω;σ), U(ω; η)

)
ω∈{0,1}

is a sufficient statistic for the best-

response correspondence if the mean actions in each state are interior, given (1) and
(2), (ii) also holds. To conclude, η is perfect.
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We already observed in Section 1.1 that the tie-breaking rule implies interior
mean actions, q(ω;σ) ∈ (0, 1) for ω ∈ {0, 1}. Hence, any equilibrium satisfying the
tie-breaking rule is, in particular, trembling-hand perfect.
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