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1 Introduction

In many economic settings, equilibria arise as fixed points of a multidimensional

best response mapping. In some such situations, it is difficult to show existence

of a specific equilibrium with standard fixed point theorems. For example, this

happens when there are multiple equilibria and the equilibrium in question is

not “attracting” under the best response in the following strong sense: The best

response is not a self-map on any open environment of the equilibrium. Then, for

example, Brouwer’s or Kakutani’s fixed point theorem cannot be invoked to prove

existence of the equilibrium.

In this note, we provide a generalization of the intermediate theorem to multi-

ple dimensions. This generalization can be used in settings with such multidimen-

sional, non-attracting equilibria to formally establish their existence. It applies

under certain conditions on the best response mapping.

In Section 2, we prove an auxiliary result—an analogue of the implicit function

theorem— which may be of independent interest. Then, we prove the generalized

intermediate value theorem (Theorem 2).
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2 Result

Lemma 1 Suppose f : [0, 1]× [0, 1] → [−1, 1] is a continuous function with

f(r, 0) < 0 for all r, (1)

f(r, 1) > 0 for all r. (2)

Then, there exist continuous functions r̂, x̂ : [0, 1] → [0, 1] such that r̂(0) = 0,

r̂(1) = 1, and

f(r̂(t), x̂(t)) = 0 for all r.

Proof. Let F be the upper contour set of f ,

F = {(r, x) : f(r, x) > 0}.

F is open in X = [0, 1]2 since f is continuous. Let E be the connected component

of E containing the upper edge, YR = {(y, 1) : y ∈ [0, 1]}. Let E ′ = E − ∂X.

Then E ′ is open in R2. Let E be the closure of E ′ in X. Then, E is a connected,

compact subset of R2. This means that we can choose a homeomorphism (that

is, a continuous and invertible map) h : [0, 1]2 → E. Note that the restriction

of h to (0, 1)2 is a homeomorphism onto its image im(h((0, 1)2)) = E ′ and the

restriction of h to ∂([0, 1]2) = [0, 1]2 − (0, 1)2 is a homeomorphism onto its image

im(h(∂([0, 1]2)) = E − E ′

Let xT = inf{x ∈ [0, 1] : (1, x) ∈ E}, xB = inf{x ∈ [0, 1] : (0, x) ∈ E}. Note

that xB, xT ∈ (0, 1) given the assumptions of Lemma 1 and since f is continuous.

The continuity of f also implies f(1, xT ) = f(0, xB) = 0 and

f(y, x) = 0 (3)

for all (y, x) ∈ E − E ′. Now, consider the shortest path in ∂([0, 1]2) between

h−1(0, xB) and h−1(1, xT ). Then, consider its image im(h(P )) ⊆ E − E ′. Choose

a homeomorphism ϕ : [0, 1] → P . Then, denote the components of h ◦ ϕ by r̂

and x̂. By construction, (r̂, x̂) maps to E −E ′ so that f(r̂(t), x̂(t)) = 0, given (3).

Further, by construction, (r̂(0), x̂(0) = (0, xB) and (r̂(1), x̂(1) = (1, xT ). Thus,

x̂, r̂ satisfy the claimed properties. This finishes the proof of Lemma 1.

First, Lemma 1 can be viewed as an analogue of the implicit function theorem.
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To see this, we restate the implicit function theorem.

Theorem 1 (Implicit function theorem) Suppose f : [0, 1] × [0, 1] → [−1, 1] is

a continuously differentiable function. If f(r, x) = 0 and ∂ f(r,x)
∂x

̸= 0, then there

exists open set U with r ∈ U and a continuously differentiable function x̂ : U →
[0, 1] so that f(x̂(r), r) = 0 for all r ∈ U and x̂(r) = x.

Lemma 1 yields a continuous function (x(·), r(·)) that maps to solutions of

f(r, x) = 0. Similarly, the implicit function theorem yields a curve of solutions to

f(x, r) = 0. However, it ensures also that for each r, there is only one x(r) so that

(r, x(r)) lies on the curve. Further, it shows that the curve is not only continuous,

but continuously differentiable.

The relative advantage of Lemma 1 is that it does not rely on assumptions

about partial derivatives. Thus, it is a useful alternative in situations in which

verification of the qualifying condition of the implicit function is difficult and

differentiability of the curve of solutions is not needed.

Second, Lemma 1 implies a generalized version of the intermediate value the-

orem to two dimensions as follows.

Theorem 2 Suppose that f : [0, 1] × [0, 1] → [0, 1] is continuous and satisfies

(1)-(2). Suppose g : [0, 1] × [0, 1] → [−1, 1] is continuous and has the property

that g(0, x) < 0 if f(0, x) = 0 and g(1, x) > 0 if f(1, x) = 0. Then, there is

(r0, x0) ∈ (0, 1)2 such that f(r0, x0) = g(r0, x0) = 0.

This is because Lemma 1 implies that g(r̂(·), x̂(·)) is a continuous function with

g(r̂(0), x̂(0)) < 0 and g(r̂(1), x̂(1)) > 0. Thus, Theorem 2 follows by an application

of the (usual) intermediate value theorem.
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